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ABSTRACT. The dynamic behavior of the mercury damper
is investigated. Particular attention is paid to the
eccentric annular mercury configuration, which is the
final continuous ring phase which occurs in the opera-
tion of 211 mercury dampers. In this phase the damp-
ing is the poorest, and the system is closely linear.
The crescent, or broken-ring, case is also considered.
During the course of the investigation the hydro-
dynamic problem is treated as three dimensional, and
extensive use is made of a variational principle of
least viscous frictional power loss, which is derived.
A variational principle of least constraint is also
used to advantage. Formulas for calculating the be-
havior of the mercury damper are obtained.
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INTRODUCTION

The purpose of the present investigation is to examine
the dynamic behavior of the mercury damper, and to devise
means for calculating this behavior. Since mercury dampers
can operate in several different ways, depending upon the
mercury configuration, the nature of the inner free surface,
and the state of turbulence; and since any given damper
operates in at least two very different manners, the over-
all behavior of a mercury damper may appear to be both
complex and peculiar.

It will be seen that any mercury damper acts more ef-
fectively when the mercury forms a broken ring than when it
forms a continuous ring. It follows that the transition
from a broken ring to a continuous ring, which occurs in any
case during the course of the damping, corresponds to a
transition from a more effective to a less effective action
of the damper. It is particularly important that the be-
havior of the damper in this unfavorable "continuous ring"
case be analyzed; and a considerable portion of this report
is devoted to this analysis. The more favorable broken ring
case is also treated; however, it is very much simpler ihan
the unfavorable case just mentioned.

It will be shown that the viscous frictional power loss
in the mercury is of primary importance in eliminating the
precession, or wobble; also that this loss satisfies a mini-
mum principle which constitutes a powerful tool for deter-
mining the velocity distribution in the mercury, and hence
the power loss itself. The pressure distribution is deter-
mined using another variational principle--the principle of
least constraint--which is devised for this purpose.

It will be shown that when the wobble is small and the
mercury is in the unfavorable continuous ring configuration
the system is approximately linear, and its behavior is
described by linear differential equations with constant co-
efficients. 7The usual metnods for handling such equations
can hence be applied. This is not true when the wobble is
larger and the mercury is in the broken ring configuration.
In both cases, however, specific formulas are obtained for
calculating the behavior of the system (see Appendix B).
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MECHANICAL SYSTEM. STATEMENT OF PROBLEM

The mercury damper consists of a circular channel, or
race, partially filled with mercury, as showr in the figure
below. Two such dampers are mounted with their planes

mercury

perpendicular to the axis of symmetry of the main spinning
body, and with their centers lying on this axis on opposite

sides of the center of gravity of this body and equally spac-
ed from it, as shown in the following figure. By using two

1/// damper
— . body
- center of
gravity
L
T axis of
- k\\\ symmetry
damper
gm o TN, : v
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dampers the translational effects on the main spinning body
cancel, whereas the rotational etfects add. We shall suppose
that the ratio of the principal moments of inertia of the
main body at its center of gravity and the initial motion
given to this body are such that this body precesses about

an axis which passes through the center of gravity and ap-
proximates the spin axis, the angular velocity of precession
exceeding that of spin. More exactly let

A = moment of inertia of the main
body about its axis of symmetry,

B = moment of inertia of the main body
about a transverse axis through its (1)
center of gravity,

v = angular velocity of spin,
B = angular velocity of precession;

then

% > 1 and B8 = ég closely. (2)

It will evidently suffice to consider one of the two dampers;
hence looking down upon the upper damper shown in the figure
at the bottom of page 2 the channel, or race, containing the
mercury appears as shown below. The center cf the channel
is S, which point is also the point of intersection of the
spin axis with the plane of the damper. The channel rotates

channel
for mercury

precession
axis

w‘y\s

spin
axis

s
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about peint S with angalar velocity »; however, ir addition
point S rotates about W, the point of intersection of the
precession axis with the plane of the damper, with angular
velocity 8. We have seen that 8 > v.

Let us obscrve the damper from a reference system which
rotates about the precession axis with angular velocity B
counterclockwise; then the velocity vector V and the acceler-
ation vector A of any particle of mercury will be composed
of components as follows:

V=V, + VL’ (3)

R

A=A, +A +A, (4)

where

VR and AR are the relative velocity and
relative acceleration vectors,
respectively, seen while riding
with the moving reference system,

V. and A, are the locked velocity and

locked acceleration vectors, re- (s)
spectively, which the particle

would have if it were locked with

the moving reference system,

A, = Zﬁ'x V, = Coriolis acceleration vector,

R
= precessional angular velocity vector.

C

Aot

The acceleration components Ap and A¢ can evidently be re-
placed in effect by two systems ot inertia forces of inten-
sities ('AL) and (~AC) per unit mass, respectively. Our
problem thus becomes one in which we may regara ourselves as
being stationary, and the velocity and acceleration of a
mercury particle as being given by VR and AR, respectively.
The main body now apparently rotates clockwise about the spin
axis, which passes through the stationary point S, with an
angular velocity (g-v). Two body forces are acting: the
centrifugal force of intensity (-Ap) per unit mass, and a
"Coriolis force" of intensirty (-AC).

The centrifugal force, which corresponds to the locked
accele~ation, 1s

Centrifugal force = rﬂ‘lr per urit mass (6)

= a_e .
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where r is the radial distance from W, and l, is a unit vector
pointing radially outward from W. Equation 6 is evidently the
negative gradient of the potential function

= - % r’ﬁ’ per unit mass. (7)

The Coriolis force, which corresponds to the Coriolis acceler-
ation, is

Coriolis force = - 2§’x VR per unit mass. (8)

Let us temporarily neglect the friction between the
mercury and the channel; then the mercury will appear to be
at rest, and Vg = 0, Ag = 0. The Coriolis force field there-
fore vanishes, and the mercury is at rest under the influence
of the centrifugal force field alone. Since the forc¢e acting
on a particle of mercury which lies on the free surface must
act normal to this surface it follows from Eq. 6, or from
Eq. 7 and the fact that the surface must be one of constant
$, that r is constant on this surface. Seen from above, the
free surface thus appears to be circular. For sufficiently
small values of the distance W3 the mercury is shaped like
an eccentric cam, the outer circular boundary being centered
on S, and the inner circular boundary being centered on W as
shown in the figure below. The outer boundary is the channel
wall; the inner boundary is a free surface, the radius of
which is dictated by the amount of mercury in the damper.

channel
wall

e —— b oo

’ s R B
£
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As WS is increased a situation arises wherein the two
circies become tangent, after which the mercury becomes
crescent-shapna, Since the total volume of mercury remains
constant, the radius of the inner circle increases after the
mercury has become crescent-shaped.

Other mercury configurations will be obtained if <the
inner radius of the channel is so large that it forms part
of the i n1er boundary of the mercury surface, which coulc
happen in the eccentric annular shape, the crescent shape,
or both. We +thus have four possible cases, which arise from
the fact thai for either the eccentric annular or the cres-
cent configuration the inner surface of the mercury can be
either entirely free or only partially free.

Next let us suppose that the friction between the mercury
and the channel, which was neglected above, is now "gradually
turned on;" then since the channel is apparently rotating
clockwise with an angular velocity (B-v) the mercury tends to
be dragged clockwise. If the mercury is in a crescent con-
figuration the channel rotates clockwise relative to the
mercury body as a whole with an angular velocity (g-»), and
the cen%er of gravity of the mercury will shift somewhat off
of the extension of line WS in the clockwise sense.

~f the mercury is in an eccentric annular configuration
t'e mercury flows in the clockwise sense, the result being
t» reduce the velocity of the mercury relative to the channel.
The mercury is dragged clockwise, and its axis of symmetry
shifts from the line WS in the clockwise sense. Supposing
that the Inner free surface of the mercury can still be repre-
sented with sufficient accuracy by a circle, it follows that
I, the center of this circle, shifts from W to a new position
which lies somewhat above the line WS,

The various mercury configurations described above in the
case of no friction are still possible with friction acting.
In addition the mercury flow can in each case be either lami-
nar or turbulent. In view of this and the fact that the mer-
cury may be either eccentric annular or crescent shaped, and
the inner mercury surface may be either entirely free or only
partially free, we see that the mathematical analysis of the
mercury damper involves the consideration of eight distinct
cases. Which of these cases will exist at any time depends
upon v, A/B, WS, the inner and outer radii of the channel,
and the volume of mercury in the damper. In any given design
A/B, the channel dimensions, and the volume of mercury are
fixed; also v is approximately fixed. As the damper functions,
however, WS decreases from its initial value to zero, and the
velocity of the mercury relative to the channel drops to zero.

e u"‘—‘l..'b’ m T Lachatar o Tt A guan Rty p PP
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During this time all eight of the above cases will not be
experienced, but three may be, In all damper designs the
last case will be that in which the mercury shape is eccen-
tric annular, the inner mercury surface entirely free, and
the flow laminar. Preceding this may be one wherein the
mercury shape is eccentric annular, the inner mercury sur-
face either entirely or partially free, and the flow turbu-
lent. Finally, preceding this may be one wherein the mercury
is crescent-shaped, the inner surface but partially free, and
the flow turbu ent.

ACTION OF THE DAMPER UPON THE MAIN SPINNING BODY

Wz shall now calculate the force and torque exerted by
the mercury upon the channel walls, and hence upon the main
spinning body. In so doing we shall view the system while
rotating counterclockwise with angular velocity B8, as de-
scribed in the previous section. We thus see the relative
velocity VR and the relative acceleration Ag; and have a
centrifugal force field given by Eqs. 6 or 7, and a Coriolis
force field given by Eq. 8. Let

F = total force exerted by th: channel walls
upon the mercu'y,

FL = total centrifugal force exerted upon the
mercury,
F. = total Coriolis force exerted upon the
mercury, (9)
VRO = relative velocity of the center of

gravity of the mercury,

ARO = prelative arcceleration of the center of
gravity of the mercury,

M = total mass of mercury;

then for translational equilibrium of the mercury mass taken
as a whole we have

F + PL + FC = M ARO' (10)

Although we may see the mercury as flowing in some way, its
center of gravity will appear to be fixed; hence ARO = 0 and
Eq. 10 becomes

F B - FL - PC. (‘ll)
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Multiplying Eq. 6 by dm, the element of mass, ?nd inte-
grating over the entire mass of mercury, we obtain

S |
PL =B S; T 1r dm. (12)

But ;;, the vector from W to the center of gravity of the
mercury is given by

T =1 | A
L N S; T lr dm. (13)
Equataon 13 in Eq. 12 gives

F,=Mg T,

L (14>

which is identical with the centrifugal force that would be
obtained if the entire mass were concentrated at the center
of gravity,

Turning to the Coriolis force FC we obtain from Eq. 8

FC = - 2 S; B x VR dm = - 28 x S; VR dm. (15)

But, noting Eq. 9,

S‘V dm = total momentum of mercury = M V = 0, (16)
M R RO

since VpRp = 0 due to the fact that the center of gravity of
the mercury appears to be stationary. Equation 16 in Eq. 15
gives

= 0, (17)
Equations 14 and 17 in Eq. 11 now give finally

F = - MB’F;. (18)

1 gee Appendix A,

e s
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NHext, we shall determine the torque ce¢bout point W that is
exerted by the mercury on its channel walls. Let

= torque vector about W of tThe forces which
the channel axerts on the mercury,

Ty, = torque vector about W of the centrifugal (19)
forces exerted on the mercury,
To = torque vector about W of the Coriolis
forces exerted on the mercury;

ther: for rotational equilibrium of the mercury mass taken as
a whole we have

I e _
T + T, + TC\— ra y T X VR dm (20)

since W is a fixed point. Here the_integral is the moment of
momentum, cr angular momentum, and r is a vector from W to
the elementary mass dm. Despite the fact that the mercury
appears to be flowing, the moment of momentum remains con-
stant; hence the right-hand side i Eq. 20 vanishes, and

Eq. 20 becomes

iy Toe (21)
Noting Eq. 6 we see that the centrifugal force acting on
ary elementary mass dm has a line of action which passes
tnrough the precessior. axis, and hence has a zero moment
about this axis. Integrating over the entire mass it follows
that '

T, = 0. (22)

Finally it follows from Eq. 8 that

To = - 2 3M T X (EQVR) dm, (23)
whence
To ™ - 2 S; [(r-VR) g - (r-ﬂ)VR] dm. (24)

Since T and '.t:’.'.are ocrthogonal ;F" 0, and the second term in !
the integrand of Eq. 24 vanishes, leaving %

sl o e ——"
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Te=- 28 S; r°VRdm. (25)

Noting the figure below let us place

-

r='ﬁ's’+?s, (26)

where WS is the vector from W to S, and ;; is the vector

from S to the elementary mass dm. Substituting Eq. 26 in
Eq. 25 we obtain

To = - 273’3; (WS4 ) -V dm

—

= - 28 WS ° S; VR dm - 28 S; rs°VR dm;
however the first term vanishes due to Eq. 16, leaving
To =~ 2B S; r Vg dm. (27)

For either the eccentric annular shape or the crescent shape,
and for either laminar flow or turbulent flow the radial
component of VR at any element dm is the negatiye of that
component at the element dm which is located symmetrically
opposite that plane of symmetry of the mercury which contains
the spin axis, shown in the following figure. It follows

10
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that the contribution of the mercury which lies on one side
of this plane to the integral in Eq. 27 cancels the contri-
bution cf the mercury which lies on the other side; hence
the integral vanishes, and

Te = 0. (28)

Equations 22 and 28 in Eq. 21 now give
T =0. (29)
We thus see that the moment about the precession axis of the
forces exerted by the channel upon the mercury is zero. It

follows that the resultant of these forces passes through W,
and hence may be considered to act at W, as shown below.

~ ;

S

\.\ ‘1
~
™~ - to center of
// ~ & gravity of
mercury

F is the force exerted by the channel on the mercury; hence
(-F) 1is the force exerted by the mercury on the channel, and
thereby on the main spinning body, as shown in the following
figure. (-«F) may be replaced by the two component vectors

1l

1
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~ o to center of gravity
™ = of mercury

Px and F_, the magnitudes of which are, noting Eq. 18,

”

lFll = |F| sing, = M roB’ sing = - M yoﬁ' >
_ (20)
. 2 3
IF’I || cos¢ = M r B cosp ;=M x B
where x, and y, are the x and y coordinates of the center of
gravity of the mercury measured with reference to a Cartesian

coordinate system having W as an origin and WS as the positive
X direction. Let

WS = ¢; (31)

then the moment of F1 about the spin axis is, noting Eq. 30,

Moment exerted

by the mercury _ = | - 3
about the spin = 'z |P1| ¢ M oy 8 (32)
axis counterclockwise.

This acts in the same sense as v, and, together with an equal
moment due to the other damper, results in a rate of increase
of v given by

LT, My ¢
v=2T--—T—-. (33)

It should be noted that Yo is negative,
F, and Fg give rise to torque vector components ?; and T,
respectively, about the center of gravity of the main®spin- Y

ning body as shown in the following figure, where noting the
figure at the bottom of page 2,

12
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>
y
W - —— S
Tx
l?x| = |F, 5, 50
7. | = |F, |1
yu ‘a ’

L being the distance, closely, between W and the center of
gravity of the main sninning body. Since the torque vector
of the external forces acting on this body about its center
of gravity is the velocity of the tip of its angular mo-
mentum vector H for the center of gravity, we see that the
torque vector components T and 7,, when multiplied by 2 to
include the effect of the other dZmper, may be regarded as
veiocity components of the tip of this vector. Since the H
vector lies along the precession axis and is of magnitude Ay,
closely, we see, noting Eqs. 30 and 34, that ?’ causes W to
move toward S with a speed

Velocity component _ _ o= lele
of W toward S Ay
(35)
ZMyOﬂ:Lz
=

It is this velocity that lines up the precession and spin

axes, and hence gets rid of the wobble.

Similarly, we see that T. causes W to move in the y
direction with a speed

= 3.1
Velocity component _ Elfy'L - 2H§gﬁ L (36)
of W in y directicn Ay Ay ’

the factor 2 being put in to include the effect of the other
damper. This subtracts directly from the y component of the
velocity of S relative to W, the y component of the velocity
of S being due to the precession and equai to ¢8. The effect
of this is to reduce the precessional anqular yelocity by the

amount

- |
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2,3
Reduction in precessional _ 2Mx, AL (37)
angular velocity Avé
since the angular velocity of S about W is the precessional
angular velocity.

Another effect of the velocity comporent of W in the vy
direction, given by Eq. 36, is to shift the precession axis
off of the H vector for the main body. HNoting the figure
below we see that although the H vector still passes through
W, the precession axis now penetrates the plane of the damper

v
- Sy

(38)

Here va is given by Eq. 36, and

WS = ¢, vsy=§B.

Attention has already been called to the fact that the
translational effects of the two dempers cancel.

14
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RELATION OF THE VISCOUS FRICTIONAL POWER
LOSS TO THE TORQUE

The force F exerted by the channel on the mercury (see
figure at the bottom of page 1l1) arises through the action
of the stresses transmitted by the channel walls to the
mercury. These stresses consist of the normal stress, or
pressure, and the shear stress, which is due to the viscosi-
ty of the liquid. Taking moments about the spin axis, which
passes through S, we see that since the pressure contributes
nothing, the entire moment is contributed by the shear stress.
Noting Eq. 32 and the figure on page 12 we see that thils mo-
ment is of magnitude |F1 ¢, and, looking down from the top,
acts clockwise on the mercury (figure below). Here the eccen-
tric annular shape is shown merely to fix ideas. At present

motion of mercury

motion of
channel

we are making no restricticn upon the shape of the mercury.

Since the main body rotates with an apparent angular
velocity (B-v) clockwise, it delivers a power .

P [F & (B-v) = - M y k8" (B-0) (39)

to the mercury. Although the mercury is apparently flowing,
its kinetic energy remains constant; the potential energy

15
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which it has by virtue of the potential function, Eq. 7,
which arose because of the centrifugal force, is constant;
and the power delivered by the Coriolis force field is zero,
since the Coriolis force 1s everywhere perpendicular to the
velocity of the mercury.2® It follows that the entire power
(Eq. 39) is dissipated as heat, and is equal to the yiscous
frictional power loss in the mercury. Substituting Eq. 39
in Eq. 35 we obtain

3
Velocity component _ ; o . 2PL
of W toward S -4 AECB-V)? (40)

hence the viscous friction loss P is the primary factor in

the determination of ¢, and hence in the elimination of the
wobble.

3 Instead of using the constancy of the potential energy
to show that the power delivered by the centrifugal force
field to the mercury is zero, we cculd also compute this
power directly; thus noting Eqs. 6 and 7 we have

Power delivered to
mercury by centrifugal = - S‘pVR-Vde = p S'[QV°VR-V“(GVR)]dv
force field v v

where p is the density, and the integral extends throughout
the volume of the mercury. Applying the divergence theorem,
and noting that V°VR = 0 since the fluid is incompressible,
this becomes

Power delivered to —
mercury by centrifugal = - p OVR ‘da =0
force fiela a

where da is the vector element of area, and the integral ex-
tends over the mercury surface; for Vp:-da = 0 because at this
surface Vp is tangent to the surface, and hence perpendicular

to the normal.
The fact that in the case of the eccentric annular shape

the mercury surface is not simply connected causes no diffi-
culty in 1pplying the divergence theorem, for a plane cross-
cut could be introduced to render the surface simply connected
without altering the values of the integrals.

16
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MINIMUM PRINCIPLE FOR THE VISCOUS FPICIICNAL
POWER LOSS

Since the mercury is incompressible V:V, = 0, and at any
instant the lines of flow cannot terminate anywher¢, but must
be closed. It follows that at any instant the flow may be
considered to be composed of an infinite number of closed
elementary tudes of flow, figure below. Let us suppose that

the flow is statiorary--that is, the flow pattern cdoes not
change with timec, it being remembered that while observing
this pattern we are rotating counterclockwise with an angular
velocity B. We shall now show that if the flow is stationary,
and if the shape of the velocity field is neld fived, so that

the lines and tubes of flow are unaltered then the flow will

distribute itself among the various tubes in Such & way that
the viscous frictional power lo 108S is & minimum.

Let u. choose a set of rectanguler xyz»coordinate axes
to measure the apparent meotion of the mercury; and let vy,

and v, denote the x, y, and z components of Vp, respec-
thely, then the normal and shear stresaes in the iquid which
arise due to viscosity are, respectively,?’

’ Rouse, Hupter. Fluid Mechanics for Hydraulic Engi-
ncers, New York, McGraw-Hill, 1938. Pp. 144.45,

17
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8vx 8vy sz
T = # 5 =Wy 9, T W Gy
v By By dv
. = = X y = - y Z
“xy Tyx “(aby + dx Tyz sz “\ 8z + 8y>’ (41)
v Bvx
Tax = Txz ==“—_f)_x--'-az>

The corresponding time rates of charge of strain are, re-
spectively,

o Ly Yy
X 9 * "y 9y’ "z % °’
ov v Y v
S L Yy N SRS :
ny Yyx = By + ax ? sz Y2y e T y (42)
C_ s 8vz . 8vx
Y 2x “XZ Bx = bz °

Noting that the fluid is incompressible the viscous fric-
tional power loss per unit volume is hence

Power loss per _ < dv \’ (6 o
unit volume

v :
* “l x,+_ > (a AT > (Zx. az .

Integrating throughout the volume of mercury we obtain for P,
the total viscous frictional power loss

SEARC(CIRIEICON
L) e G )} e

Holding the shape of the velocity field fixed let us give
Vg ¢ variation §Vp, the corresponding variations in v, v
and v, being 8v,, 8vy, and dv,, respectively. At every pXint
6V tﬁus has the same direction as VR, hence it 1is really

(43)

(44)

ot g :?!—r-_*—vm—u« [P e e gl g gy —ct 3, > N—— _— n
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IV | which is being changed. We require also that the wvaried

fleld satisfy the actual surface boundary condition that at

the solid boundary surface provided by the channel the fluid
velocity be that of the solid surface. We thus have at the

mercury surface

V, = relative velocity of solid bounding
surface at such a surface,

6VR = 0 at a solid bounding surface, (45)

Shear stress tangent to a free surface = 0
for the actual velocity field.

The variation in P can now be obtained from Eq. 44, thus

v v vy v 9y
_ X X y Y z zw
-Z“S'v{z[axobx + 0 t 5z 0 8z |

9y 9y
v \
+ (52 + > ( + 6 =
3v v
’ Z
+ (\ +—-— (ﬁ Iy

v v v v
—_Z 4 X —t X
+(8x + 82) 6 8x +o §z>} dv.

Since

8 9
é 1;» va 6'3;¥ = §; dvy, etc. (47)

it follows that Eq. 46 may be written

{ 8‘1
GP-MS ITO)\OV +Ty§—'6\’ ‘4'“5"’“5'—5\?]

V (a 6
+ 3 4 =- §v
) Vx v)

R N -
+(.;f§=. a,\(-s--dv rb\')l dv.
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Considering only the first term in the integrand of this
integral we have

Ap ) S‘ S‘ ax 8> , Cydzdx. (49)

Integrating by parts this becomes

X (y,2)
RN A PP

z X Bx

where x,(y,z) and x3(y,z) are values of x on the surface.
There may be more than two such values, but this causes no
difficulty. Denoting the direction cosines of the nnrmal to
the surface by cosa,, cesﬁl, cos'r1 Lq. 50 becomes

8v » 8y
4“{5 —5—’—‘ év, cose da - S ’3‘ dv d.vwr (51;
L, 9X X v 9x X J

where the first integral extends over the surface of the

mer cury, and the second extends throughout its voelume. Pro-
ceeding in the same manner with the other terms in the inte-
grand of Eq. 48, Eq. 48 becomes

C [Bvx va v,
6= 2 ‘)a {2‘_-5; dvx cosa1+—5-;- avy cosﬁl +'8_E' 6vz cc:s.y1
K%n— + 75?1 (6vx cosﬁl + évy cosal)
Vy Bv
Bz + a- (Gv cosY, + évz cosBl)
(52)
(:;- T (sz cesa, + 6v_ cosy )} da
v 8%y 8dy
-2;;(‘ {2r~——6v +-———-¥6v+ fév]
Jv L 9 X 9y oz z)

20

T ——— e s iy ey i —




L NAVWEEFS REPORT 8611

/ 8 3 v 8\’2
T kévy 5z T8V, §;> (82 * 3y

’ 8 ;) A\
+(6vz§-;+5lx —8-'} \-—-;(—+-§;-j dv.
In view of Eq. 41, Eq. 52 may be written

6P = 2 S‘ [(¢_ cosa, + T_ cosB, + T__ cosy, )Ov
a X 1 X

1 Xy 1 XZ
+ +0 c +
(Txy cosa, oy cosB, Tyz cosyl)Gvy

+ ,
(sz cosa, + Tyz cosB, + o, cosyl)évz]da

(53)

{5 G (“—5,(—-3,—
2 stao + +
% v 9x oy \ 9y /
[ 8aV5) 8 V
+ _2 By’ +9z 5z+ > ax ay Ox _"vy
3
r 3% v, v\ vy O9v_\7
.z, 8 Z X 8 y z
+ b2 az’+-§-£ <ﬁ—§—x +T—2)+-5—y- (82 'l"ry -6Vz} dv.
But the coefficients of édv,, va and 8vz in the surface
ur

integral are the eomponenfs of face stress; and in the
volume intejral we note that since the fluid is incompres-

sible
dv dy dv
R TEE DA ralell (54)
whence
3
bv vy
8 (T, ). x
dv 8y 55
8 Ve 2y B
9z \ 9x by oz’
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It follows that Eq. 53 may be written

2 2
v 9" v. ° Vo
6P = 2 S‘ S-GVRda - 2 S; [ + 2 + 2>6Vx

a ax” dy 9z

v 3y 8y
C( = (56
N 3" dy dz y

(6zvz Gavz 82VZ>6 J
+ + + v |dv
axz 2 2 VA

\ Ay 8z

where S is the surface stress vector. Equation 56 may be
written

6P = 2 S‘ §-6Vpda - 24 S‘ (V*Vp) 6Vpdv, (57)
a v

But 4Vgp vanishes at the channel walls, and the tangential
component of S vanishes on the free surface, which causes
S.6VR to vanish there also. It follows that the integrand
of the surface integral vanishes over the entire mercury
surface; hence this integral vanishes, and Eq. 57 reduces to

6P = - 2 S‘ (V?Vg) *6Vpdv. (58)
v

The condition for dynamic equilibrium in the liquid is

pVR°VVR = -« Vp - pV® - 208 X VR

+ wvivg (59)
where p 1is the density of mercury, and p is the pressure.
Here the left-hand side 1is the mass times acceleration per
unit volume, and the terms on the right-hand side are the
force contributions per unit volume due to the fluid pres-
sure, the centrifugal force field (Eq. 7), the Coriolis force
field (Eq. 8), and the viscous frictional force, respectively.
Multiplying Eq. 59 by 6VRp and integrating throughout the
volume of the mercury we obtain

M S; (V’VR)-GVRdv = S; (pVR-VVR + Vp + pVe

— (60)
+ 2 pB XVR)°6VRdV.

22
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In order to evaluate this integral let us consider the volume
to be broken up into elementary tubes of flow, rorresponding
to which we let the element of volume dv be

dv = dods (61)

where ds is the length and do is the cress-section of an
elementary tube, as shown in the following figure. Also let
the volume of mercury which flows across any cross-section

portion of
¢losed tube
of flow

of the tube per unit tim2 in the direction of the unit tan-
gential vector 13, in tte flow GVR be déq; then

déq

)VR o ]b' (62)
Multiplying by Eq. 61 now gives
GVRdv = 1Sdsd6q, (63)

whence Eq. 60 becomes

uS (Vv V) +0Vpdv = g déq § [pls'(VR'WR)
all line of

tubes flow
(64)

+1Vp + pl -V + 2pls-79'x Vg 1ds.

But the triple product ls B X VR vanishes since 1 and V
have the same direction; also

. < = —d-E 8§ =
§ls Vpds gds ds dp = 0, (65)

23
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§p15-v¢ds =§pg§i ds = p §d<l>=0. (66)

Substituting in Eq. 64 and noting Eq. 58, we obtain

6P = - 2 S‘ ddq §. pls-(VR'VVR)ds. (67)

all line of
tubes flow

But

dVR

R ds

IV I Vg i

where R is the radius of curvature of the line of flow, and
ly is a unit principal normal vector pointing toward the
center of curvature of this line. Substituting in Eq. 67
now gives

W

Ilel WV = Iv l
(68)

6P

S' &- dlvg |
- 2 déq PIVRI T ds

“w

all line of
tubes flow

-p 5 d6q § d(lvRI’), 6P = 0. (69)

all line of
tubes flow

The actual value of P is therefore stationary when the velcoci
ty field is given the variation GVP.

In order to show that this value of P is actually a
minimum we consider the second-~order term which was not
included in Eq. 46, namely

S, G G G

<06v 86v ) (0 Bov \l (70)
+
(ﬁév v
+ >‘}dv.
8x
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This term is evidently positive, and is the viscous fric-
tional power loss which would be obtained with the velocity
distribution 6Vgp alone. Since the first-order terms vanish,
as indicated by Eq. 69, the increase in P due to 6Vp is

given by the positive quantity (Eq. 70). Since this vanishes
if and only if 4VR ¥ 0, we see that P takes its smallest
value when 6Vp = 0, and hence can only be increased by devi-
ating irom the actual velocity distribution VR in the manner
described.

As an application of this principle of least power loss
we see immediately that in the case of the eccentric annular
shape the relative, or apparent, velocity of the mercury
will in some places be greater than, and in other places
smaller than that of the channel. It follows that an ob-
server riding with the main body would see the mercury going
in the direction of motion of the channel in some places,
and in the opposite direction in others. This is the situa-
tion which pertains in a wave motion.

As another application we see that since P is a minimum
for the actual distribution of Vi it is not sharply dependent
upon this distribution. It follows that if an approximate
distribution of VR is obtained by some approximation proce-
dure, the accuracy obtained for P is much greater than that
cbtained for Vg. This is important, for the quantity in
which we are really interested is P, since, as we saw in
Eq. 40, it is P which determines the rate of damping of the
wobble. Finally we note that the approximate value of P
obtained is slightly too large, since it would be reduced if
the actual distribution of VR instead of the approximate one
were used in computing it.

IMPROVED TREATMENT OF THE ACTION OF THE DAMPER
ON THE MAIN SPINNING BODY

The effectsof the forces exerted by the mercury on the
channel, and hence on the m&¢in spinning body, were previously
considered (pp.13-14) with regard to their effect in modify-
ing the motion of this body. The treatment was, of course,
approximate; nevertheless it was adequate to show how the
damper reduces the precession, or wobble, how it reduces the
precessional angular velocity, and how it alters the preces-
sion axis. It is open to tne objection, however, that the
forces exerted by the mercury were computed using thea motion
which the body had pricr to being acted upon by these forces.
Although this situation sugg: sts a method of successive

25
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corrections wherein we first recompute the forces using W
instead of W (see figure on page 14), and the new value of
precessional angular velocity; and then compute second cor-
rections to the moticn of the main body--and so on; never-
theless we shall avoid this by taking immediate account of
the fact that with the damper acting the angular momentum
vector H of the main spinning body does not lie along the
precession axis.

Noting the figure below and the figure on the bottom of
page 2 we see that for WS = ¢ small the K vector is, closely,

[

§8B

r‘ Ay
4.
H

4

o

4.
S

composed of a component of magnitude Av lying along the spin
axis, and a component of magnitude 552 at right angles to
this axis (figure below). Denoting the point where the line

spin axis

H Ay

center of gravity
//// of main body

T

extending from the center of gravity of the main body along
the H vector penetrates the plane of the damper by H, which
should cause no ambiguity, we see that

26
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488
L
A

T8 = — = 38 (71)

Since the velocity of the tip of the H vector is the w...7ue
due to the external forces, in this case these exerted by
the mercury, it follews, noting the figure on page 13, the
fact that

X B
= ¢ (1 - §;>, (72)

and the fact that T and Ty must be multiplied by 2 in order
to include the effect of tKe other damper, that

2 1Tl =- S (328 -- & um, (73)

2 |7 | = ¢ ( - @§> (“”) (Av-Bg). (74)

In connection with Eq. 73 we note that although W is not
stationary, it is, nevertheless, the instantaneous center of

S in its motion., The velocity component of S in the direc-
tion WS is therefore zero; hence the component of the velocity
of point H in this direction is the same as the component of
the velocity of point H rela*tive to S in this direction.
Equation 73 therefore follows from Eq. 71.

If we let A denote the decrease in precessional angular
velocity due to the dampers, thus

A =B g, (75)
then Eq. 74 beccmes
2 I?yl =5-’5L£-§. (76)

Substituting Eqs. 30 and 34 in Eqs. 73, 74, and 76, we
obtain, respectively,

9. MLY) 3 -
dt (¢48) = 2 <;§" B Yoo ("7)
£(Av-B3) = MLYpx, (78)

i
%
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EAB = 2ML'3xo. (79)

Further consideratior of these equations must await the
determination of X, and vy, .

ECCENTRIC ANNULAR CONF1GURATION--NATURE OF THE
FREE SURFACE OF THE MERCURY. SPECIFICATICN
OF THE SHAPE OF THE VELOCITY FIELD

We saw earlier that @ given mercury dampar may operate
in several configurations (pp. 2-7) depernding upon the size
of the wobble. quantity of mercury, ind dimensions of the
channel; also we saw that one mercury damper may not exper-
ience the same sequence of contigurat ons as ¢aother., How-
ever, in all cases the final configura icn i, the same for
all mercury dampers, namely, eccentric annular. The deter-
mination of the nature of the final damping of the wobble
hence in all cases requires the analysis of the eccentric
annular configuraticn. We must, in particular, determine
the viscous frictional loss P, < nce we saw from Eq. 40 that
it is this quantity which is ©f primary importance in damping
out the wobble. In determining P we shall apply the minimum
principle derived prewvinusly (pp 17-25) to determine the
velocity distribution; however, in order to ao this we mast
f.rst specify the shape of th wvelocity field.

We saw on page 5 that if there were no wall friction the
iniicr free mercury surface would be a circular cylinder
centered at W as shown in the figure on page 5. With wall
friction, however, this inner surface is no longer exactly
a circular cylinder, and is no longer centered on W, but is
displaced as iadicated in the figure on page 15. Since for
cur purpose the circular shape offers no particular advan-
tage, this deviation frem it is no cause for coucern.

Jdsing polar coordinates r and 6 let us consider the
function

r =a+brosf + c sing (80)

where b and ¢ are sinill compared with a, as shown in the
ticur> on the following page. Equation 80 may’be written

r? = ar + bx + A (81)

28
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Y
{r,8)
]
o\
W
o N\ -
center of ~
circle

whence
r? - 2ar +a* = -ar+a’sbx+ cy,

3 3 (82)
(r=-a) = - ar + a" + bx + cv.

Retaining only first-order terms in b and ¢ we see from
Eq. 90 that (r-a)? is of second order in these quantitie;;
hence the left-hand <side of Eq. 82 may be replaced by zero,
giving

b

c
r = a+ 2 X + FRA (83)

Squaring and omitting terms of order highcr than first orde:
in b and ¢, we obtain

'+ y' = a' + 2bx + dcy;

or. again good through first-order terms,

(x-b)* + (y-c)* = a*. (84)
We thus see that good through first-order terms in b and ¢
the polar cuwgg_ézg. 80) is a circle of radius a whose center
is at point x = b, y = c. 7To this accuracy kq. 80 may be
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used in place of the equation for a circle, and for our
purpose is much mcre conveinient.

For the present we shall confine our attention to the
.ase where the eccentricity (distance of center from S) of
the inner mercury surface is small, which cocrresponds to tne
final phase in the operation of ary mercurv damper. It is
evident that any particle of mercury which is in contact
with the channel wall moves 1n a circle of zerc eccentricity,
since it must have the same veleocity as that point on the
wall with which it is in contact. Supposing as an approxi-
mation that all of the particles of mercury move in circular
paths it follows that the eccentricities of these paths in-
crease Ircom zero as we move away rrom the channel walls and
into the mercury. In particular we see that the central
part of the free surface of the mercury bulges ocutward so as
to 'ncrease the depth of the mercury where it is deepest
(radially), and shrinks irward so as to decrease this depth
where it is most shallow. The free surface is hence by no
means cylindrical. Xeeping these facts in mind and noting
Eq. 80 we shall, as an approximation, choose the function

2
r =71, - l(rzna) - A% [1 - <f?> ] cosé (85)
1

to specify the shape of the velocity field. Here cylindrical

coordinates are used, the origin being at S, the center of

the channel (as shown in figure on the following page); also
r, = vuter radius of channel,

z = half the axial {vertical) width of the

channel,
a = radins of inner free surface with no (86)
wobbla,
b = worst eccentricity,

A parameter,

For any values of A, b, and 2z Eq. 85 gives, accurate through
first-order terms in b, a horizontal circle. As the para-
meter A varies from zero to one with b arnd 2z fixed a family

of circles is cbtained, the first being on the outer channel
wall, and the last lying cn the free surface. When z = & z,,
or A = 0, corresponding to channel walls, the eccentricity of
these circles is zero. When A = 1 Eq. 85 becomes the equation
of the free surface, shown in the figure on the fcllowing page.

The circle which lies at the center of the free suvrface, for
which = = 0, A = 1, has the greatest eccentricity, nameiy b,
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stream
line

P

<;:—————4%Z%%—-;
S

The total volume of mercury is

Volume of _ S‘ ( kel -r

mercury . \
“1 a -bl1l - \‘-7 cosé
1

S:z‘ 3011 {':-a +2ab[' ( ) 1cosa

4

213 (87)
- b? [1 - <3i> ] cos’é} dzds

T [ ) - @]

'y tefi 24l
= 2rzl(r'-a ) « #b z‘\A -3 + 5)

rcz iédr

n
i

-

31




s e b
R s, T

NAVWEPS RIPORT 8611 __

Volume of_ 2 2 4 .
mercury =2rz, [ra-a - 315 P ] (88)

Accurate through first-order terms in b we thus have

Yolume ~f 2 2
mercury o 2¥%;(Tym3). (89)

From Eq. 89 we see that accurate through first-order terms
in b the radius a of the circles which compcse the free sur-
face of the mercury is the same &as that of the inner free
cylindrical surface of the mercury when there is no wobble.

Referring to the figure on the previous page we see that
the y and z coordinates of tne center of jravity of the mer-
cury are both zero due to symmetry. The X coordinate X times

the mercury volume is

X times ax .
mercury = ( S‘ S‘ /& 47 T cos@ dzdoédr
volume K -~ ?cosa
34
= %—' S S‘ r —ate3a? ("—) ]coso
Z1
X RE
~ 3ab® [l - (2Y) ccs’?
N,/
2e 3 (90)
CH (——») | co3 0} cos8dzds
L N2,/
NTgr P4
3
2r (% {3 3, | ."':z\r} [ - (z)
= S Sab;l e« T bl -
3 .)_z1 2 1"~ \g /7% z,
4 8
+ 3 Z - <3L\ ' 1dz
z, zlj J J
: v
VST AU R S S |
21bz [& \ . 4 3 0\1 3 + 3 7)]
X times |
mercury = ibdbe (% a* +—€% b'). (91)

voliume

Dividing by the mercury vclume {Eq. ¢8) we now obtain
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— _ __2b(35a’+6p%)
X ... 2 1 3,
7[45(rs—a )~4b" ]

(92)

Accurate through first-order terms in b we thus have

 }
- 2ba
X &

. (93)
)

’ .
era a

The radius of curvature of the curve
r = £(d) (34)

in polar ccordinates is
3
lrz+r,:)a

R =
ri+20t?ppn

(95)

where a prime indicates differentiaticn with respect to 6.
Applying this to the function

r = a, + bo cosé (96)
where a, and bo are constants we obtain
3

(a: + 2aob° cosf + b cos'O + b: sin'O)’

K=

s ) 3 2 : 3
ao+2acboc056+bocos #+2b _sin 0+aobocoso+b°uos 6

Nite © WO M

(a: + b: b 2a. b, cos8)

R = . (97)

2 2
a, + 3a b, cosé + 2by
Applying the binomial theorem now gives

] 1
R = [(d:)i + % (a:)' (b:+2a°b°c030)

1
+33@hTd

3 2
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1 2.-23

x [(a:)' + (-1) (a)) (3a°b0cose+2b:)

+ (-1)(-2)(a)"" 3 (3a,b cos0+2b])% + ... ]

- 1 4,2 3 1
R=a + bo <;3 3a0 cosé = ao ‘ 3ao coso>

0 a
0

2 s 2 1 1 ,.2 3
+ bo [ao (- . + (-1)(-2) ) 9a° cos 0) (98)
B 2

©

3 (L
+ > ao2ao cost \- % 3ao cosf
0
3 3111 )L
+ (2 a, + 2323 3 4a0 cos @ a] + ...
0 7 ag
R=a + B; 2+ 3+ (9 9+ —) %ol +
- ao ao - 2 . - 2/ COS )
R=a + B;- (3cos®6-1) +
- ao 2a COS - e 0 e °

Accurate through first-order terms in bo we thus have

R = a,. (99)

Comparing Eqs. 85 and 96 we can apply this result to Eq.
85, and thereby obtain

R & r, - A(r'-a) (100)

accurate through first-order terms in b,

ECCENTRIC ANNULAR CONFIGURATION--MAGNITUDE
OF THE VELOCITY FIELD

Cerresponding to didz we obtain a tube of flow whose
cross section is an elementary parallelogram. In this tube
the ranges of values of A and z are infinitesimal; however,

0 varies from zero to 2z, and the shape of the parallelogram

o - ;. -y — ————
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tube

tube

%

varies with 6, as shown in the above figure. S'nce the shape
of the velocity field is completely specified by Eq. 85; the

volume of mercury which flows in any tube dAdz per second can
be specified by the velocity function q(A,z), th=s

Xglgﬁepgid:econd = q(A,z)dAdz, (101)

Since this volume per second is the same in all parts of the
tube, the velocity at any point can be obtained by dividing
Eq. 101 by the tube cross section. Accordingly we shall now
determine this cross section.

The altitude of the elementary parallelogram which come
poses this cross section is dsz. iting Eq. 85 in tle form

r = f(0,A,s8) (102)

we see, looking down from the top, that the base of the
parallelogram is the distance between the curves (Eq. 102)
corresponding to A,z and A + dA, s, respectively. This
distance depends upon 6, and is measured along an orthogonal
trajectory of the curves, as indicated in the schematic
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A,z curve
r dé
y -
dsn
S X

diagram, above. The values of dr and d# corresponding to
this distance are given by the relations

dr = 3= ds + = a, (103)
idr _ _r_
“Tde T Br (104)
]

in which r is given bv Eq. 102. Here Eq. 103 is sbtained by
differentiaving Eq. 102, and Eq. 104 is the condition for
orthogonality. These equations may be written

dr-%%da-?r;"dx’

or

: (105)
Y] dr + »°d§ = 0,

which constitute a set of two linear, algebrailc equations in
dr and d8. Solving, we obtain
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'
80
or or (106)
- 09 9A
de - 3 /97 dAa.
T v —
90/

It follows that ds n? the base of the parallelogram, is given
by

ar
= ~/(dr)’+(rda)’ - Y dA.
]
o2+ (2
/ =
or
ds oA dQa, (107)

1l 9r\a3
r 96

’ /1+

D

since we see from Eq. 85 that %% is negative.

Dividing Eq. 101 by ds,dz, the cross section of the tube,
using Eq. 107, we obtain for the velocity of the mercury in

the tube
-.Qi%;il V//; + (%-%§>’. (108)
17Y

Here r is given by Eq. 85, and q(A,z) will later be deter-
mined so as to minimize the viscous frictional power loss P.

cxpanding the radical in Eq. 108 by the binomial theorem
gives

A,z 1 /1 80e\' 1/ ar\*
Vs " -~g;§£—l [l + 3 (% 53) -3 (% 33) + ...]. (103)
7Y

Substituting from Eq. 85 ard retaining only terms through
first order in b we odtain finally
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v o g(A,z)
s . z\3
ra-a+2kb[l - (—f> ]cose
z, |

i A’b'—l- -zz-asine
ot

2
X Ll + % PERN > ]
. 2 [ Z
r,~A(r -a)-A b[l-\;:) }coso
V o _g_ﬁl,_Z_)_ .{1 - 2Ab 1l - /.E_ ) cosé (110)
s r,-a r,-a \zl ‘ ) i

CALCULATION OF THE VISCOUS FRICTIONAL POWER L0OSS P
FOR GIVEN b AND q(A,z)

Referring tc Eq. 43 we see that in order to obtain the
viscous frictional power loss per unit voiume we must deter-
mine the partial derivatives of each of the velocity compo-
nents V., Vy? and Vz; with respect to x, y, and z, respectively.
We may, however, place the coordinate axes in any way we choose.
Let us place these with the origin at the point at which we
wish to determine the loss per unit volume, the z axis vertical,
and the x axis tangent t¢ the line of flow, the positive
direction being that of the flow. The positive y axis then
extends outward normal to the line of flow, as shown below.

% Ji\‘—\:‘

line of flow
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With this orientation of axes v, £ 0; herce

avz avz BVZ
Bx 0, dy =0 9z 0. (111)
Furthermore, since the fluid is incompressible

8Vx 8VX BVZ
V.V = 53 + 3 + 5% = 0; (112)
hence since the last term vanishes due to Eq. 111 it follows
that

v 5YY
¥ __x
5y T (113)

It thus remains for us to compute
avx 8Vx 8Vx 8Vy va
8x® 8y ?* 8z’ 8x’ 8z °

We shall now consider these separately.

A
Determination of 75?. Let s be the distance measured

from the origin along a line of flow, and let a denote the
angle which any arbitrary line of flow makes with the posi-
tive x direction, as shown in the figure below. Noting that
VS is a function of position we see that since

Vx = V_ cosa (1i4)

lines of flow
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it fnllows that

v BV, b
T = B Cos® - V_ sina e (115)

At the origin, which is the only point ain which we are
interested, @ = 0; and Eq. 115 becomes

Since this is merely the directional derivative of Vg in the
x direction, which at the origin is the direction of increas-
ing s, it follows that

avx BVS
ET T (11%)

av
Determination of 7;53 Referring to the figure on page 39

we now have

Vy = - VS sina, (118)
)Y ay
—-—i T - -——'i 1 - 'Q'g
52 i sina - V_ cose 3. (119)

At the origin @ = 0, and this kecomes

—.—_y- = —a-g St
&x - Vs axo (1(.,-‘.;)

But %g is the directional derivative of @ in the x direction,

which at the origin coincides with the direction of increas-
ing s; hence at the origin

%% = %% = curvature of line of flow, (121)

Ecuation 120 thus becomes finally

Ay v
e am)

where R is the radius cf curvature of the line of flow.
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av
Determination of-jsf. Differentiating Eq. 114 we obtain

ay :2Y )

X s o
By By cosa - Vs sina‘ay. (123)

At the origin a ~ 0, and this become:

2 = 55, (124)

But this is merely the directional derivative of V. in lthe y
direction, which at the origin coincides with the airection
normal to the line of flow. Equation 124 thus gives

v 8V

—_—X o
dy 3sn (125)

where s, indicates the direction of the outward normai to the

line of flow.

8V
Deterimination of —=., Ditferentiating Eq. 114 we obdtair

avx BVS da
T7 = §5 cose - ¥ sina gT. (126)

At the origin, where a = 0, this becomes
8Vx 575
L (127)

It should be noted that the direction of the positive = axis
here is the same as that of the z axis in Eq. 35. In apply-
ing Eq. 127 we may therefore use the = coord'nate of Eq. 8S5.

oy
Determination of 151. Difterentiating Eq. 118 we obtain

v dv
15} - . 15} sina - V, cosa %%. (128)

At the origin a = 0, and this becomes
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Y
Yy 8a

- s 97" (129)

With Eq. 129, as with Eq. 127, we may use the z coordinate
of Eq. 85.

AY
Determination of 75%. Substituting Eq. 117 in EZq. 117

we obtain immediately

oV A%
Yy _ s
ay o=o- 85 . (130)

If, however, we differentiate Eq. 118 we obtain

AY v
——Y— = .__i i - < -Q—c—! K4
5y = " sina VS cosqa . (121)

% dy

At the origin @ = 0, and the y direction is that of the out-
ward normal; hence Eq. 131 becomes

By -

F) - Vs 9s
n

. (132)

<

That Eq. 132, which we have just obtained by differentiation,
s compatibl 'ith Eq. 130, which was obtained as a conse-
quenc2 of the incompressibility of the fluid, can be seen by
examining an elementary length of a tube of flow (see figure
below). Fluid enters the left face, of area ds,dz, wich a
velocity Vs’ and leaves the right face, of area

ea
(dsn - 5;; dsnds)dz,
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with a velocity (VS+dVS). Since fluid Jeaves the elementary
volume at the same rate at which it enters, it follows that

Vsdsndz = (V +dV ) ( - ———-ds> dsndz
o o (133)
0= dVS - Vs 5;; ds,

wherein the higher order term has been omitted. Equation 133
may be written

===V _ == (134)

which equation expresses the identity of Eqs. 130 and 132.
Equation 130 is easier to apply than Eq. 132, since its
av

negative is already available as 75?.

Substituting Eqs. 117, 122, 125, 127, 125, and 130 in
Eq. 43, we c¢btain

Fower loss a
per unit = > bs > ('s 7z, J, (135)

volume

We shall now substitute Eq. 110 in this expression, and
thereby determine the power loss per unit volume gocd through
first-order terms in b.

Aleng a line of flow A and z are constant; hence

(=]
<
@
<

I~

s _ s 06
9s 96 98s° (138)
But, noting Eq. 110,
av
i Zq(hz)“’ [ (-~> ] sing; (137)
(o~
2

also, noting Eq. 85 and applying the binomial theorem,
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. 8o _ 1 o X
ds T r
3 or\2
s/I‘ + -8—'6\
\ 27 -i (138)
- 2 4
= {%x - A(rz-a) - A'b [1 - <é: J osé}
86 ., 1
s " rz-A(rz-a) {# -A(r =) {l (zl Jcose + ...}.

Equations 137 and 138 in Eq. 136 now give

2
v, 2q(A,z)Ab[l - (f;) }sino

- = - . (139)
9s (rs-a)z[ra-k(rz-a)]

av
Next let us determine ggén We have for fixed =
n
BVS GVS
Y = me—— ——
dJS Y da + 59 de. (140)

In the normal direction d6 is given in terms of dA by Eq. 106.
Substituting in Eq. 140 and dividing by -dsn,4 given by Eq.
107, we obtain

ov_ .. 8
oV S 22 22
_'s _ 986 98 0A
A 2 78r5:
ov r + '5'5
ds or
A

LAY

dere the minus sign is due to the fact that g;i is the
n

directional derivative of V in the outward direction normal

to 4 stream line,

4
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T

BVS
Vs _ o V//1 + (18N __ r 5 96
Bsn or \r 96
A V/l 4 (1 8\
\r 96
Substitutirg Eqs. 85 and 110 in Eq. 141 we obtain
, - ]
8q(A,2) b [ 2z
EJ) l- T,-a Ll - \z cosé
_ 1
z \'
(r,-a) {%3-a+2lb[l - (é:) ]cosé}

N
, 2q(x,2) bLl - <é—)t]coso
(ra-a)a {? -a+2xb[l - ( > ]c\sé}

9V 9q(A,2)

S . 9 {1 - 41b [l - -—%) ]cosq}
bsn (r'-a)’ (

. (142)
+ 29(A,2)b z [ (fgw ]cosa

(r,-a)

X

AT (141)
3

@

@
<<
w

fas

Continuing we next use Egqs. 100 and 110 to obtain
v

s q(A,2) ' 22D 'z \!
R o (rs-a} [r’.l('r’_a)] {l - ——-ra-a [1 - <21> ]COSG}. (143)

Next we obtain from Eq. 110

oV 23&%*£l 2b 2 \?
s Z
52 o -3 { - ;::; [1 - zr) ]cosé}
(144)
4QLA z)Abz cosd.
2 (r af

Lastly we shall determine g . Noting the figure on the
following page we see that
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dr

(I‘,O,Z) or (A,G,Z)

line of fiow

circle with center
at S

_ -1 /1 or
a = tan (é B9 /> (145)

Bzr 9r Odr

r————---——_

82080 90 9z
ge - . 146
9z 2 /9p 2 ( )

+ KEE

Noting Eq. 85 we see that the first and second terms in the
numerator are of first and second order in b, respectively;
and that the first and second terms in the denominator are of
zeroth and seccnd order in b, respectively. It follows that

3
da .1 8'r
3z © T 0200’ (147)
or, substituting from Eq. 85,
S 2bA'z
3 2 " 3 sinf. (148)
zl[ra-k(rz-a)]
This with Eq. 110 now gives finally
da 2q(A . z)bA "z
V. 5> & = siné. (149)

s 9z z:(r’-a)[r’-l(rz-a)]
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We have now determined all of the quantities which appear in
Eq. 135, the power loss per unit volume.

In order to obtain the total power loss P we must inte-
grate Eq. 135 throughout the volume of the mercury. Using
the x, y, 2z axes of the figure on page 31 we have

X =1 cosf, y =r sinf, 2z = z (150)

where r is given by Eq. 85. The Jacobian of x, y, z with
respect to A, 0, z is

/
%f cos#é K%% cosf -1 sin0> %% cosé
9(x,¥,2) _
G(X,O,Z) 'a_)‘ll siné g% siné + r COSO> B.i‘. sing . (151)

Developing by minors with respect to the elements of the
last row, we obtain

4 ]

%f cosé g%'coso - T sin&)t
ax Z = \
89(r,6,2) %% sin# g% sing + r cosO/
8(x,¥,2) _ _ dr
5(x,0,2) oA (52

The element of volume in the curvilirear coordinates A, 6, z
is therefore

= 19(x,¥,2) = . pdr .
dv IB(A,O,z) dadedz Y dadedz (153)

since %% is negative, as is evident from Eq. 85. Equation 85

in Eq. 153 now gives finally
dv = {kra-a)[r’-l(r‘-a)]

2
+ xb[Zra-Sx(r’-a)] [1 - <§L> ]cosa (154)
1
3 2 z\P a
- 22°b [1 - (§L> ] cos é} dadedz.
1
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Now that we have cbtained all of the quantities which
appear in Eq. 135, and also the element of volume, we are in
a position to write down the expression for the total power
loss P. Substituting Eqs. 139, 142, 143, 144, and 149 in
Eq. 135, noting Eq. 154, and integrating throuchout the
volume of the mercury, we obtain

S S ‘S‘”z 4qlb[ -(;z-) ]sine

-a)z[rz-l(rz-a)]

9q

Erbmb-r
t]- 1- 1l- cosé
i (ra-a)3 Ty=a j
2 e ) e
(r, -a)
q _2Ab 1
" (r -i)[r -A(r -a)] r,-a [ <;—> }coso‘J
9q
+ 9z { (;_) ]cosé} 4QAbzcoso
Tamd z (r -a)

3

2 . 3

+ [ S 2dbA "z siné J ( {(ra-a)[lx-l(ra-a)]
7, (ry-a) [ry-A(r,-a)] s

3
+ Ab[Zr’-SA(r’-a)] [l - <€L> ]cosé}dkdzde.
1

Here q = q(A,2z). If we knew q and b. Eq. 155 would give P
closely; however, q is an unknown function which we shall now
determine. In so doing Eq. 155 will be reduced, and the low-
est orders of terms in b sorted out. Further reduction at
this point, however, would be premature.
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DETERMINATION OF q{A,z)

Since q(A,z) depends upon b, let us expand this function
in a Maclaurin series, thus

a(r,z) = q,(A,2) + ba (A,z) + biq (A,2) + ... . (156)

The problem of determining q(A,z) then becomes that of nbtain-
ing qo(k,z), ql(x,z), qz(l,z),..., which functions are inde=-
pendent of b. "This we can do by minimizing the viscous
frictional power loss P, given by Eq. 155, under the condi-
tions that the mercury velocity be that of the channel walls
wherever it is in contact with these walls, and that b be
fixed at some arbitrary small value.

First, let us place b = 0, then Eqs. 156, 110, and 155
become, respectively,

qQ(A,z) = q (},2z), (157)
q, (2,2)
VS =~ Ta (158)
2
Z o { aqo |
P _ “ S‘ 1 S 1 (‘2’8 i —'8-1— i qo
S | ST o o)
8qo 3 (153)
+ r’f: 5 (r,-a) [r,-A(r,-a) ]dAdzas.

When b = 0 the mercury takes the shape of an annular ring,
and rotates with the main spinning body as if it were a
rigid, integral part of it, the apparent angular velocity
being (B-v) clockwise. Noting Eq. 85 with b = 0, it follows
that

v, = (8-v) [r’-l(r.-a)]. (160)

Substituting in Eq. 158 we now obtain

q,(A,z) = (B-v) (r,-a) [r -A(r,-a)]. (161)
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Substituting Eq. 161 in Eq. 159 we find that both brackets
in the integrand of Eq. 159 vanish, and

P =0, (162)

which we should expect, with the mercury rotating like a
rigid body. It may be mentioned that Eq. 161 can alsc be
obtained directly by minimizing Eq. 159 subject to the above-
mentioned surface conditions, no use then being made of Eqs.
158 and 1.60.

Next, let us substitute Eq. 156 into Eq. 155, which can
be visualized without rewriting Eq. 155; then the resulting
expression for P becomes a power series in b, thus

P=P +Pbr P’bz + ... . (163)

Referring to the subscript on F: or qi as the order of that
Py or qj, Je see that the higher the order of P,, the higher
will be the order of the highest order q which it contains.
In order to determine successively q, (A,z), qa(k Z), ... We
make nse of the following two facts.

1. q(A,z), and hence q;(A,z), qg(A,z), ... are such that
P is a mirnimum, subject to tbe above- ment‘oned surface condi-
tion, regardiess of the particular value chosen for b.

2, If b is taken to be sufficiently small, the sum of
all the terms veyond the nth in Eq. 163 is negligible in
comparison with the sum of the first n terms of this series,
providing on.y that these n terms contair at least one non-
vanishing tern.

We have already seen how q.(A,z) can be obtained by using
but one term (n=1) of Eq. 363 in connection with the minimum
principle.

In order to determine q,(A,z) let us place n=2; however,
since P, contains only q,(A,z), which has already been deter-
mined, and since P, = 0, due to Eq. 162, we shall in effect
try to determine q (A, z) by minimizing P , in which q,(A,z)

has been replaced by its known erpression (Eq. 161).

Substituting Eq. 156 in Eq. 155 each large bracket ir the
integrand becomes a power series in b. These series, however,
begin with terms which are linear in b, for those terms with-
out b, which are also those which appear in the brackets in
Eq. 159, all vanish, as we have seen, Noting the squares on
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the large brackets in the integrand of Eq. 155, it is now
evident that the smallest power of b which can appear in the
expansion of P is two; hence

P. = 0. (164)

In view of this we place n=3, and try to determine ql(k,z)
by minimizing P .

Since the coefficient of b? in the series obtained by
squaring a power series in b which begins with the linear
term is merely the square of the coefficient 'of b in that
linear term, we can write imuediately

001[1 /z >z]sin6 !

ar : ’
S‘ g Y [(r -a)? [ry-A(r,-a)]

3q
4 T
+ [ (-i> ]cosa
(r, -a)
8q1 , ‘
— q N
- oA + 0 3 [l - (f) ]COSO
(rg-a)”  (r,-a) Zy.
(165)
/o\3
zqok{l (\‘f‘ ]COSO qQ 3
+ 71 i
(r,=a)" [r, -A(r,-a)] a)[r,-A(r, -a)]
8.':0 8q -3
2 5 z \? “ii' 4q Azcost |
+| - — [1 - (;{) ]coso + e + 3 -
(I“-a) 1 3 zl(r'-d)

2q.A%z siné 3 ?
[ 2 - } © (r,-a)[r, -A(r -a)]drdzde.
zx(r’-a)[r’-k(r’-a)] $

Noting that

—
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“ 3T
S (A+Bcosg) de = x(2n3+B%) (166)
Y0

we square the brackets in Eq. 165 and carry out the integra-
tion on #; then substituting Eq. 161 for Q, we obtain

(o el - )T

P, = xu(B-v)"
: S; -z, ? (r-a-a)z
272
-]
+ 4{r3-2A(r’-a)]3 ! .
(r,-a)
\ (167)
lSlszz[rz-l{rz-a)] 4A4&:(
+ - (r, -a)[r -A(r_-a)]drdz
e ) X s 2 2 2
‘ll.a 1
dq, 2
1
a) (ry-a) [r,-A(r,-a)]
az (

-

Pa=a

S(rz-a)[r'-x(r'-a)]dldz.

Here the first integral does not contain q,, and hence plays
no role in the minimization process. The integrand in the
second integral contains two squared brackets, and 1s hence
positive. This integral therefore takes its minimum value,
zero, when

q,(x,2) = 0, (1€8)

which is consistent with the required boundary conditions,
and 1is hence the desired function,

At first sight it may seem strange that P, = 0 and

1,(A,2) = 0; however, noting Eqs. 85, 110, and the figure on
page 31, we see that if b 'is replaced by (-b), the effect is
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merely to rotate the flow pattern as a whole through 180 deg,

which does not alter P or q(A,z). P and q(A,z) must there-
fore be even {unctions of b; hence

Pi = 0 if 1 1is odd,

(169)
qi(l,z) = 0 if 1 is odd.

We note that Eqs. 164 and 168 are in accord with this result.

Finally we note that since qg{(A,z) provides the cesired
mercury velocity at the chainel walls, it follows that all
higher orcer q's must veni . at t* chaeannel walls, thus

q,(A,z) = 0Owhen 1 > 0. and A = 0 or z =% z_. (170)
i 1

DETERMINATION OF THE VISCOUS FRICTIONAL POWER LOSS P

Returning to Eq. 167 we see ti.at since the second integral
vanishes due tc Eq. 168, Py is given by the first alone.
Carrying cuz the integration on z, we obtain

2 ]
{16A 16z, . 4[r‘-21(r.-a)] 16z,

1
P, = ww(f-v)? S‘
[V

ls(r’-a)3 lS(r’-a)‘ (171)
16272z [r -A(r,-a)]' 'z
+ - : + } (r,-a) [r,-A(r,-a)]dA
3z (r_-a)
1Y s
1 SZA z
= f% ww(8-1)° Y {?*“*-7 [r,-A(r, ~a)]
o
82
+~————l—; [r: + A(-r:(r‘-a)-4r:(r'-d))
(r,-a)

+ A.(Qr (r'-d)' + 4r.(r‘-a)') + l’(-4(r,-&)’)]

20 s 2, . K
+ (o ) (A -SA ra(.l-a) + 3A Js(rt~a)
S(r_-a)
- l‘(r'-a)al +-———§~——-[A.r‘-k'(r’-a)]} da
1
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32z
-8 3 7% J1 1 ]
P, = 15 "(B-v) (T,-a) [3 T, -3 (rz-a)J
8z
4'————3——-[r: - % r:(rz-a) + “83"rz<rz'a)3 - (rz-a)s]
(r,-a)
20 1l 3 3 .3 3 . 3
t 2 (r,-a) [? Ty = 3 Ta(Fym3) F 5T, (r-a)
5(r -a)
1 L] 1 1
- % (Tymd) ] +'__zl [5 s T 6 (rz-a)] }
2 3
32z . r 202 T 3z. 1
8 2 172 3 172
= 1T au{p-v) {; 16z1 + t-a) " 7 3
3 (r_-a) (r_-a)
2 3
4 MR AT - 'nz 3
S (‘z-a) . nZ,;(zz a) _ 15‘2 +_§Q r, __;}
6 z2, z, z, 3 zl(rzua}J
T 3 T 2 r
-4 Y ( : / Ta a
P = 7% T (8-») {5421[2 \r2~a> -3 Krz-a> t 3 (;2-a> - 4]

2 _
r r £ T, N\ T, ~-& -a\Na-
+ 52 |40 (r 1) - 90 + 78 < 2 > - 25 (T; > } }.
1 3 2 2
Knowing Py and the fact that | = 0, due to Eq. 169, it

fcllogs from Eq. 163 that accurate through the term bontaln-
ing D

P =P b*, (173)

~We saw an pages 15 and 16 that this quantity is of prlmary

importance in elimirating the wokble.

EXTENSION OF THE MINIMUWM PRINCIFLE FCR TAE vIscous
FRICTIONAL POWER LOSS :

The class of velocity distributions considered in deriv-
ing the principle of least viscous frictional power 1loss
(pp. 17-25) consisted of those distributions which at each
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point have the right direction, and which alsc satisfy the
actual surface boundary condition at the solid suriace, a&s
described on page 19.

Later on in applying the minimum prir-iple to determine
the velocity distribution, the shape of the velocity field
was specified by Eq. 85, which was assumed to give a sufii-
ciently good approximation if b is properly chosen. We still
have the problem of determining b.

It has been convenient to picture the mercury flew as
being composed of an indefinitely large number of elementary
tubes of flow, a typical tube comprising the region A to
A+ dAx in A, and z to z + dz in z. We may, in fact, cons’der
the fluid to beconstrained to move in a network of such
tubes. If in so doing we picture the walls of the tubes as
having the ability to exert constraining pressure normal to
these walls and hence normal to the tubes of flow, we arrive
at a situation wherein the approximate velocity distribution
obtained for any value of b and given by Eqs. 85, 110, and
156 may be considered to be the exact velocity distribution
- that is obtained if a suitable constraining body force § per
unit volume be superimposed. The body force intensity vector
§ is evervwhere normal to the relative velocity vector V.
Adopting this point of view we shall henceforth refer to the
approximate velocity distribution corresponding to any value
5f b as the "constrained velocity distribution.™

We can easily extend the minimum principle given on pages
17 to 25, s¢ that it is applicable not only to the actual
velocity distribution but also to the constrained velocity
distribution. In order to do this we need only to add a term
¥ to the right-hand side of Eq. 59, which leads to an addi-
tional term

- S‘ g6V dv (174)
v

on the right-hand side cf Eq. 60. This term vanishes, how-
ever, since ¥ Js normal to 6Vg, which is parallel to Vp;
hence Eq. 60 is not altered, and the derivation continues as
before. It follows that the principle of least viscous fric-
tional power loss applies not only to the actual velocity
“distribution, but also to the constrained velocity distribu-
tion.

As a consequence of this extersion of the minimum princi-
ple we can dispense with the assumption that the shape of the
velocity field given by Eq. 85 is sufficiently close to that
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of the actual distribution to permit the application of this
minimum principle, since the validity of this principle has
now been established for the constrained velocity distribu-
tion itselr.

PRINCIPLE OF LEAST CONSTRAINT

Since the constraining body force intensity ¥ was intro-
duced artificially so that with it the approximate velocity
distribution becomes exact, we see that the exact solution
of the fluid flow problem is characterizea by the relation

§= 0, (175)

This will automatically be realized if

3" dv = 0, (176)

the integration extending throughout the volume of the mer-
cury. If the solution obtained is not exact, the integral in
Eq. 176. whic. we shall call the "constreint,"™ will not vanish.
Nevertheless the problem of obtaining an exact solution in-
cludes that of obtaining zero constraint; and in obtaining
our approximate sc¢lution we shall try to achieve this condi-
tion as closely as possible, as indicated by the condition

Constraint = ¢ = S‘ 8’ dv = minimum, (177)
v

At present we have a family of approximate solutions
characterized by the parameter b and, as we shall see, by an
unknown function of A and z. These will be determined by the
above "principle of least constraint,"™ which is expressed oy
Eq. 177, and by a surface analogue of this principle which
applies to the surface constraining pressure at the iree
mercury surface. This analogue will, however, be considered
later (see page 64).
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DETERMINATION OF THE PRESSURE FIELD

If the constraining force intensity o be included in
Eq. 59 we obtain as the condition for dynamic equilibrium in
the liquid

PV Wy = - Vb - pV& - 20BXVp + uv"vR + 5. (178>

We shall use this expression to determine § for use in Eq.
177; however, in order to do this we must first determine p,
the pressure.

p can be partially determined by solving Eq. 178 for Vp,
multiplying by 1.ds, and integrating along a line of flow
starting at the point for which =0, as shown in the figure
below. Proceeding thus, we cbtain

S VS
S; 1,-Vpds = ), [- p1 " (Vp-Wp) - p1 -V
(179)
- wpls-vakfruls-v?vk +1_ - 9]ds.

/llne of flow

fixed point s=0
at 4=0

variable point of
pressure p

But the triple product IS-EXVR vanishes since 1lg and Vg have
the same direction; also 1.:% vanishes since § is normal to
the line of flow. Finally, noting Eq. 68 and the fact that
we have denoted ]VR| by V., we have
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dlv, | aw?)
¢ . = ————R—-— = ...]: S ~
1t (Ve W) = Ivpl —55- = 5 5> (180)
In view of the above, Eq. 179 becomes
s s dvé)
P 46 - S' p. Vs’ as .
S; ds 47 ) {' 278 TP a t v’vR}ds,
pVZ s
p:-——i—- - pd +pu S ls‘VaVRdS + ¢(A,Z} (181)

0

wherein ¥ is constant for any line of flow, but may differ
from line to line. We rote that a line of flow is specified
by the pair of values (A,z) which correspond to it; hence ¥
is a function of A and z.

Taking the gradient of Eq. 181 gives
s

Vp = - pV.VV_ - pV& + pV S‘ 1 Vv ds + Vg,  (182)
s s o S R

Substituting in Eq. 178 and solving for ¥ we now obtain

¥y = p(VR‘VVR-VsVVS) + 2pBXVp

(183)
2 Ss v Y+
- Vv VR-V . ls° VRd3/ .
Noting Eq. 68 and the fact that
bvs avs avs
We=3s st 3?; lsn t 9z 1 (184)
also that

1sn -- 1, Vel = vg; (185)
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it follows that

(v; avs A
vR'VVR - stvs = R + vs 33;) lN - vs iﬁ;'lz' (186)
Equatic» 183 thus becomes

3 ay oV

'
- _S S - s ry
= p( TV asn> Iy = oY, 57 1, + 208XVp

s
2
- y(i*vR -V S; ls-V VRds> + V.

(187)

Here we have seen that ¥ is at each point normal to the line
of flow. The same is true of V¥, since ¥ 1s constant along
each stream line; alsc it is evidently true of the first
three terms on the right-hand side of Eq. 187, including the
Coriolis term. It follows that the one remaining term, which
contains #, is at each point normal to the line of flow.

Another fact to be noted is that since T is by definition
such as to make the approrimat2 flow physically possible,
there is no question absut the existence of y; hence the ex-
pression for V§ obtained by solving Eq. 187 must be such that
a function having it as a gradient exists. The curl of this
expression must therefore vanish.

Turning to the _.eterminatic: of 9 we first note that Eq.
187 may be written

B = U(9,r,z) + Wy(A,z) (188)
where
!; v, av -
U-p( R +vs'5'§.n' lN'p"s-ﬁ_zilz"'zpvaR

(189)

- m(v'vR -V S‘os 1s-v’des).
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The configuration, the velocity and pressure fields, the
constraining force field, and $ also depend upon the parame-
ter b, which, in turn, depends upon £, wiich is a measure of
the angle between the spin axis and the precessior axis.
Substituting Eqs. 188 and 152 in Eq. 177 we obtain for the
constraint

1 1 rarx 4
K = S‘ S‘ ) (V)" Jdadzde (190)
0 -zl 0
wherein
_ o 198(x,y.2)] _ dr _
J = !5%%?6?2% = - T % {(r’-a)[r‘-l(r’-a)]

3
+ Ab[2ra-3l(ra-a)} [l - <£L> ]cosa
1

2o - (@) Tt

due to Eqs. 153 and 154. We now wish to determine $ so as to
minimize «.

(191)

Proceeding with  and x in a manner similar to that used
with @ and P in the section on pages 49-53, we represent U,
$, and x by their Maclaurin series expansions in b, thus

U(A,2z,8) = U (A,z,0) + ol (A,2,0) + D'U(X,2,0) + ...,
$(A,2) = 9, (A,2) + DY (A,z) + DY (A,2) + ...,

(192)

L SN

3
o e, thagt .

Substituting in Eq. 190 we obtain
. 1 p %1 par
r =g tbe +d'x +,,. = S‘ S‘ 5 fu +wm
0 1 ] 0 -z, Yo ° (]

+ (U9 )b + (U +ow OBt + L. 1 JdAdzde
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1 021 parx (193)
- S' S S' {cu#w ) + 2(u 499 )

0 - 0
zl

. (UATP Db + [(U4vp )Y+ 200,499 )

. (u,+v»,)]b’ + ...} Jdadzde.

b is evidently an odd function of ¢, and vanishes when
¢=0, in which case the spin axis and the precession axis co-
incide. For any value of b, and its corresponding value of
¢, ¥, and hence ¥,, *1’ ¥, ..., are determined so that the
constraint x is minimized.

First let us place b=0, corresponding to which the mer-
cury and the main body rotate together as one rigid body.
Then the second and last terms in Eq. 189 vanish, since Vg
does not vary in the z direction, and viscosity plays no
role. Also, noting Eqs. 85, 142, 160, and 161, we have

3 ]
u, = p{(8-1)*[r,-A(r,~a)] + (B-»)" [r,-A(x,-a) 1}1,
- 2pB(B-») [r =A(r ~a) ]y
U, = -2pv(B-v)[r,-A(r,-a)]1y (194)
where 1y is a unit vector Airected toward the axis. Placing

b=0 in Eq. 193 we lose all but the first term in the brace;
and this can be made zero by putting

- w° - UO’ (195)
thus
dv,
-9y, =g 1 = - () [ AT Ly, (296)
ax
9
-*-;‘{- = 200 (8-v)(r ~a)[r -A(r -a)],

¢, = - pv(ﬁ-w)[r,-l(r,-a)]’ + pv(B-v)a’ + ce (197)
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where c, is an integration constant. Here the second term
is addeg artificially so that

wo = c0 when A =1, (198)

which will be convenient later.

Next, noting Eqs. 85, 110, 156, 169, and the figure on
page 31, we see that if b is replaced by .-b) the effect is
merely to rotate the flow pattern as a whole through 180 deg.
This does not alter x, which must therefore be an even func-
tion of b. Furthermore if we consider the pressures at
corresponding points of the flow patterns for b and (-b),
respectively, these being points which differ only by 180
deg in @, the values of A and z being the same for both; we
see that all terms on both sides of Eq. 181 except ¥ are the
same at corresponding points (see NOTE, below). It follows
that % is the same at correspondin~ points. Since these
points have the same values of A and z, but va ues of b which
differ only in sign, it follows that ¥ is an even function of
b. Since x and § are even, the x's and p's with odd sub-
scripts vanish, and

_ .3 4 6
X =Db Ky + b K, + b K g + ..., (199)

V(r,2) = g (A,2) + Dl (A,2) +bYy (A,2) + ... . (200)

Here xy=0 due to Eq. 193 with b=0, and Eq. 195. It is now
evident that good through first-order terms in b the pressure
p is given by replacing ¢ by Eq. 197 in Eq. 181, thus

3
pVv_ S "
R wii - pd + u S‘ 1V VRJS
° (201)

- pi1 (B-v) [r’-k(rz-a)]a + pv(ﬂ-u)a‘ +ocg-

NOTE. 1In the term u [o° 13-V’ Vgrds in Eq. 181 the inte-
gration exterds from the fixed point for which 6=0 on a line
of flow around clockwise to point s. The 180-deg rotation
of tne flow pattern hence adds half the line of flow to the
path ot integration of the above integral in determining its
value for the point which corresponds to s afrer the rota-
tion. The inteqgral will therefore be the same for bhoth s
and this corresponding point if and only 1if it is not altered

62




NAVWEPS REPORT 8611

by this 180-deg increase in its path of integration. We
snall now show that this condition is satisfied.

Noting that “vaR is the body force per unit volume due
tco viscous friction and that this is reversed in sign if VR
is reversed in direction, let us consider twn elementary
lengths of the tube of flow dAdz, these being of length ds
and located symmetrically about the line 6=0. Since the
fiow in one of these is similar to that which would pertain
in the other if its direction were reversed we see that
uls-V’VRds is the same for both of these elements (see figure
below). It follows that the value of ufls-V’VRds taken over

tube of
flow

symmetrical
elements

the first quadrant 0 s 6 8 /2 is “he same as its value taken
over the fourth quadrant 3x/2 =° @ & 2¢r and t..at its value

taken over the second quadrant is the same as its valu~ taken
over the third quadrant.

Turning to Eq. 181 we now sze th 't if we move cnce arcund.

the tube of flow p, V_, and ® return to their initial values,
while ¢ is constant. "It follows that the .ntegrdal must re-
turn to its initial value; hrince the wvalue of u}ls'V‘VRds
taken over all four quadrants is zero. The above results may

be written
¢ "3 3

1

RIRTRUSE

S

E B2 T wf‘wiﬁﬂ:@' -
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where the numbers indicate the quadrints over which the inte-
grations are taken. Replacing fl by f4 anr f: by fs in the
last e ~tion we obtain finally

f+f -

Applying this result to the term u fos ls'V;VRds in Eq.
181 we see that since the initial poirt of the path of inte-
gration is taken as that for which 6=C, it follows that in
computing the value of this integral for the point which
corresponds to s after the rotation we may omit the first
180 deg of the path of integration. The integral over the
remainder of the path duplicates that for point s, as desired.

SURFACE ANALOGUE OF THE PRINCIPLE OF LEAST
CONSTRAINT., DETERMINATION CF b AND c,

The constraining body force intensity ¥ was introduced
artificially to force the mercury to flow in the pattern
specified by Eq. 85 (p. 56); then the pressure was deter-
mined so as to minimize ¥ in a least-square sense as indi-
cated by Eq. 177, which expresses the principle of least
constraint (pp. 57-64). In a similezr manner we shall now
introduce a "constraining pressure" §. which acts on the free
surface of the mercury from without, and together with the
atmospheric pressure p., and the pressure Py due to surface
tension balances the pressure in the mercury and alsc the
normal compressive stress due to viscosity in the mercury at
the free surface, as indicated by the relation

av

n
P - 20—, - P~ P, (202)

R
i

where n indicates the direction of the outward (into the mer-
cury) normal to the free surface. The remaining parameters,
namely c, and b will now be determined so as to minimize the
constraining >ressure §, in a least-square sense over the
free mercury surface af; as indicated by the relation

Surface constraint = S‘ U: da = minimumr (203)
a
£

€4
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where da is the element of area of the free mercury surface.
This "principle of least surface constraint" is the su~face
analogue of the principle of least constraint (Eq. 177),
which was used in the previous section.

Before proceeding with the determination of ¢, and b ix
may be well to consider in retrospect the different varia-
tional processes that we have used. These may be outlired
as follows:

1. For arbitrarily chosen values of ¢ and b, the shape
of the relative velocity field is specified by Eq. 85, after
which the determination of this field is completed using the

principle of lieast wiscous frictional power loss.

2. The pressure field is next determined except for the
additive constant Cy using the »nrinciple of least constraint.

3. Holding ¢ fixec .. finall; determine ¢ and b by the
« 0
principle of least carfocce constreunt,

In the previous scccion the valuv of b used in determining
the pressure field was the actuial value determined by 3
above, althouch 2t the iime we did not know b explicitly in
terms of ¢&.

APPLICATION OF THE PRINCIPLE OF LSAST SURFACE
CONSTRAINT TO THE DETERMINATION OF b AND o

In order to carry out the procedure described in the pre-
vious section we must obtain expressions for the wvarious
terms which compcse 35 and hence p, which are given by Eqs.
202 and 201, respectively. We shall now corsider these terms
in order as follows:

3
pV
Tha Term ~§§. This occurs in p, and follows from Eqgs.

11C, 156, and 169, thus

r———_ ST s g ¢ wvam

- 2(1'2-&)a

32 . 2
PV:‘ _ P[QOKAQZ)] {1 _ _4Ab

——

T leoss)
1 - (F%- lcoe9 204)
Z‘/’ | 1y (

which expression is good through first-crder terms in b.

e s

65 4

A=

- v




w

NAVWEPS REPORT 8611

i
N—

The Term pd, This appears in p, and is given by Eq. 7,
thus, roting the figure above,

3,2

X |
pd = - & p3p? = . »%— [£2 + & + 2r ¢ cos(o-9)]. (205)

nfo

Here T is given by Eq. 85 with A=1, thus

7 e
> =a - b[l - (-ﬁg) ]eoso. (206)
o R \‘Zl/

This in Eq. 205 gives, accurate through first-order terms in
b,
;

2 2
.. PB” [ 3 . = .2
pe -5 {a . ng[* - \z1> ]coss T

+ 2t {: - b[l - (2?>’]cosé} cos(0-¢5}
l‘“ \Zl - ’

2
po = - R§~ a® + ¥ + 2ta cos(8-9)
_(67)

+ b cose[l - <£L>!] [- 2a - 2¢ cos(d~¢)] }.
2, .

66

- ..._‘."'_ ——— D T N ——— - AT T e e p— vy




4 NAVWEPS REPORT 8611

Omitting the higher order term which contains &b this becomnrs

.33 2 2 \2
pd = - Eﬁii— + pap {5{1 - <%f> ]:ose
2./ .

£208)

2,2
-t cos(0-¢)} : pﬁz‘f .

llere it is likely that the last term in Eq. 208 is of higher
order and can he omitted; but this can be decided later.

» S o
The Term S ls'V“VRds. This occurs in p, and can be
0
conveniently determined using the notation and choice of
axes described in the section on pages 38-48 and shown in
the figures on pages 38 and 39. Proceeding thus we obtain

VR = iVx + ij + kVZ, 1 = i at the origin,

[

VzVR = :'L‘:”'vX + jv’vy + kV'V_, (209)
23 2 1
a2v 9%y a%y
1,V = VY = —X X+ K
\ S X ax ay az

and mvst now determine the three terms which compose this
Lapldcean. The wvalues of these three terms are, however,
required only at the origin.

Differentiating Eq. 114 now gives

ev ov

s da
5;5 = % cosa - VS sina L
2 3
a°v 8"V ov oV
X _ S S . da S X
= = axa cos@ - 3== sina §= - F== sina Bx (210)
3 2
oa . 0%
- VS cosa <%§> - VS sinuw ;:?.

At the origin, which is the only nuint in which w2 are
interested, o=0, and Eq. 210 becomes

67
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2 2
"y "y 2
X S Yo
= -V -] . (211)
8x2 8x2 s \0x
Similarly, at the origin
82Vx s
2 2 - V < > (212)
dy
2 2
0 VX ] VS 8a\2
2 = 7 - VS '5-;/ . (213)
02z oz '

In Eqs. 211, 212, and 213 Vg is given by Eq. 11C; éend the
following dlrectlonal dprlvatlves

b0 _9a a2 _ da da
dx = 8s’ dy ~ 8s ’ (214)

which are evaluated at the crigin, are avallable from Eqgs.

82y
121, 134, and 148, respectively. Also azj is available

from Eq. 110 Our problem hence consists mainiy of deter-

a2 Vs 93 V
mining ""e;'i- and -5-‘;1

At the origin

s gL ( -%) (215)

§x N

since both sides of this equation express the directional
LAY
derivative of wg% in the direction of a line of flow. Noting

that the direction of increasing s_ is outward and normal to
n
the line of flow, we now have

av LAY av_ 9s

$ » 8588 , _'s_n
TBx ds Ox + 8Sn 9x’ (216)

68
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ds
n

\/
~

~

N
[0 /’

/
ds line of flow

which, noting figure above, may be written

BVS BVS 8Vs
“ox - Bs cosa + 5;; sinea. (217
It follows that
9 /3Vs> 8%V v, e
— = . cos@ - —— sina ——
Bs \ Ox 5o’ Bs Bs
3
8y oV
S . S da
+ Bsasn sina + s cosa s

At the origin, where o=0, this becomes, noting Eq. 215,

9%y 8lv oy

s S s da
= + —= —, (218)
]
d9x Bs’ 88n Os
In a similar manner we have at the origin
8y 8V
. < S> (219)
)
ay: 8sn dy
69
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since both sides of this ecuation express the directional
av
derivative of —52 in the direction of the outward normal to

the line of flow.

BVS 8Vs s . 8Vs 8sn (2209
dy ds By 9s y?

a
-ds line of flow
or, noting the figure above,
SVS BVS 3VS
By = - —§g Sine + s cosa, (221)
n
53
2 8VS = - Vs sina - 8V§ cos« Sa
ds_ \ dy ds Bs “Bs ds
a3 8
+-——z% cosa - §X§ sina 523.
Bsn S n

At the origin, where a=0, this become3, nocing Eq. 219,

] 2
93y 8%y av
> R aga' (222)
n
n

ay“ 0s

70
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Equations 218 and 222 in Eqs. 211 and 212, respectively, now
give

8%y 8’y L 2
X s s da
= s = Vs (223)
ax3 952 8sn ds K ,
2 2
9
? V: - V: . Z % -V (g%) (224)
oy 9s 5 95y Y.
n
oV

Continuing with Eq. 223 we note that ~§§ is given as a

function of A, z, and 6 by Eq. 139. Along a line of flow A
and z are constant; hence

2
()
asz Y 9s/| 8

Applying Eqs. 138 and 139 this becomes, good through first-
order terms in b,

a3y 2q(A,z)Ab[ <;f> ]coso

S o (225)
9s (rz-a) [r -A(r,- )]

»

or, replacing q(A,z) by Eq. 156 and hence, in effect by Eq.
161,

: 2
2 2Ab(B-v)[l - <3L ]coso
07V, 'y (226)
9s? - (r,-a)[r -A(r,-a)] °

The second term of Eq. 223 is given by Eq. 142 in which
q(xr,z) is replaced by Eq. 156 and hence Eq. 161, and by Eq.

121, which 1is %, and Eq. 100; thus

71
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s 8a  __ (B-v) 4Ab z
8s s 1 -A(r,-a) l-t,-a [ ( ) ](osé}

The third term of Eq. 223 follows from Eq. 110, in which
q(A,2z) is replaced by Eq. 156 and hence Eq. 161, and from

Eq. 121, which is %, and Eq. 100; thus
2
(ea\' o __ (B-v) b z
Substituting Eqs. 226, 227, and 228 in Eq. 273, we obtain

finally
oy
X = 2(8-r)b [ ( ) ]cose (229)
dx \rz-a)

good tl.rough first-order terms in b.

(227)

av
Next, continugng with Eq. 224 we ncte that 523 is given
n

by Eq. 142; also : can be obtained by replacing V_ by

s S

ov n

3§§ in Eqs. 140 through 141, Since, due to Eq. 85,
n

we thus obuain

. (s
9 VS aA ' 9s

n LN r

. (230)
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- — —— e e -

Substituting Eqs. 85 and 142 in Eq. 230 we see that the
second term in Eq. 230 is of second order in b, and can
hence be omitted., In the fi-st term q(A,z) is replaced by
Eq. 156 and hence Eq. 161, and we obtain finally

ady 6(5-v )b 2 .
S > 200 L [1.- (!1> ]cosa. (231)
Bsn (rz-a) L \Z,

Noting Eq. 214 we substitute Eq. 231 and the expression

for 525 given by Eq. 134 in Eq. 224, and thus obtain
n
d%y 5 /OV.\3 6(8-»)b \3
;( - (—5-:- + 3 {l - (‘f’) ]COSO. (232)
dy s (rz-a) 1

F'rom Eqs. 110 and 139, however, we see that the first term
on the right-hand side of Eg. 232 is of second crder in b;
hence good through first-order terms in b we have

oty r 3
X o 6(f-v)b 'y - (f%> ]cose. (233)
9

8y3 (ra-a)3

Turning finally to Eq. 213 we replace q(A,z) in Eq. 110
by Ea. 156, and hence Eq. 161. Differentiating twice with
respect to z and placing A=1l, corresponding to the inner
free surface, we then obtain for the first term in Eq. 213

aly
S @ 4ab§ﬂ‘”3 cose. (234)
8z (r'-a)z1

Next we see from Eqs. 110 and 148 that the second term in
Eq. 213 is of second order in b, and can hence be omitted.
Good through first-order terms in b we thus have

aly tab(f-v)
: o &4 '”‘ cosf. (235)
8z (rz-e)zl
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Putting A=1 in Eq. 85 we obtain

- 1, (oL
ds—-/r +<-89/ d6 = - r do

ds & - {% - b[l - (:;)2}cosé} de

for the element of a flow line in the free surface., Substi-
tuting Eqs. 229, 233, and 235 in the last equation of Eq. 209;
multiplying by Eq. 236 and integrating, we obtain finally

(236)

S 2
B S‘ ls-VJVRds ~ - Apa D(B-V) 4.4
g (rz-a)z1

8pab(f-v) /2 \? (237)
- k2 = [l - = ]sine

(r’—a) \zl

good through firste-order terms in b,

:AY)
The Term 24 ~§%. This occurs in Bs. At any point of the

free mercury surface let 1. be a fixed unit normal vector
pointing outward (into the mercury). Then

V. =1 -V

n n'Vp T Jsls-ln (238)

since VR = ¥ lS. It follows that

(7]

s . ] .
Fn = Bn Lot t Ve mn (1,01 (239)

It is necessary tou determine this quantity only on the free
surface., On this surface 1, L 1.; hence the fiist term
vanishes. In the second term we note that along the normal
1, remains constant, whereas in general 1s does not, Eq. 239
thus b comes

74
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In order to obtain this dot product we shall determine compo-
nents along the directions of the mutudlly orthogonal vectors

1, , 14 , 1,, these vectors being evaluated on the free sur-
o n

face at the base of the normal. Here the subscript o has
been added to s to avoid confusing the fixed vector 14 ith
o

the variable vector 1_, which at the free surface becomes 1,
as shown belcow. ¥ Yo

[z
ik
|
o,

dn

ftree

/ -ISO surface

Although 14 is variable, its component along 1, is everywhere
zerco; furthermore it is evident that dlglls . It tollows
1 7o

that the aonly nenvanishing cemponent of -§% is tliet along lsn'

In Eq. 240 we therefore need ~nly that component of 1, which
lics along 15n. The compounent aleng l50 is, of course, zero,.

sinve 1. 1s tangent to the free surface,
o
Noting the following figure anid the fact that,lnlls we
see that , o

P
Component of _ 07, . |9Z . (241)

1l along i Ry
n I ‘sn “n \/dst+dz'
{
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AR e oy L

channel
dz
tree surface ds ln - mercury

Moving along dsp Srom the free surface to the lower end of dz
in the figure above, r and 8 change by amounts dr and dé given
in terms of dA by Eq. 106. Starting at the same point and
moving along the free surface to the upper end of dz we have
A=1l, da=0, and

dr = 2L az + 3E qo, (242)

r being given by Eq. 85. Since dz is vertical dr and df are
the same as before, hence Eq. 242 serves to determine dz.
Substit :ting Eq. 106 in Eq. 242, we obtain

o 2 or or
BA . _ 8r or 9§ OA
3 , (dr\2 dA'=73; 92 T 59 | 3 4 [or\2 p dA
r aa) 96
dr _ 5r
a A = 53 dz
dr
_ 9
dz = BT da (243)
0z

where dA is the change in 2 corresponding to ds,. Equations
107 and 243 in Eq. 241 now give

Component of _ 1
ln along 1s

4
I

1 8r
//1 + r 90 < )

lar
n i-a—"'

76
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(244"
4 (1 oy
Component of kr 50
1 along l 1 + (1 %r\ + /gr\z
\3z/
Noting Eq. 85 it now follows that
Component of ln aliong lS =] (245)

n

good through first-order terms in b.

Next we shall determine the component of ls along 1 .
Neting the figure on page 75 we see that °n

Component of 1s along 1. = - sina; (246)
n

however, since a=0 at the free surface we have in effect

s 92, )

A

(ds )

9s n ' normal 0z (247)

normal

where the word "normal" has been added to stress the fact
that these cuantities correspond to an element dn of the
normal line, and not to an element of length in the free
surface, as shown in the figure on page 76. Howeaver, if the
triangle of legs dsp and dz in the tigure on page 76 be
rotated 90 deg clockwise, we see trat the quantities dz and
(-dsy) in the figure on page 76 can play the role of
(dSnSlnormal and (dZ)nor-mal, respectively, in Eq. 247, in
which case, noting Eqs. 107 and 243,

3,,3 _ 8
dn i//dsn+dz ='—§V/// ’i_§r (3
\r 80) 5’)

dr A/r ‘1 8r\? £T3% Gy
__OA /1 T\r ﬁL)_f oz dA & BA dA (248)
/7 8 )8 TbPT ’

|8z
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or, noting Eaq., 243,

dn = |dzl. (249)
Equation 247 now gives
da _ _da ldal o 2a °n (250)
dn Bsn én dz dn’

wherein the + sign would be obtained if 1, sloped upwara in
the figure on page 76, in which case the triangle would be
rotated 90 deg counterclockwise, Noting Eqs. 107, 243, and
245 this becomes

da . da

—— (251)
dn 8sn

From Egs. 85 and 148 we now see that the seco:d term is of
second order in b, and can hernce be omitted. The first term
is given by Eqg. 134, thus

de ., 1 S -
an v S (2532)
S
Since from Eqs. 246 and 247
Component of _ sine _ _ sinda _ _ da
d1 . T an dn (253)
—dn along lS-
n
at the free surface, it now follows from Eqs. 240, 245, 246,
252, and 253 that
BVn BVS
an - “Bs (254)

Substituting Eq. 139 in which
£q. 156 and hence Eq. 161, we

av

q(A,z) has been replaced by
obtain finally

24 .
an r’-a

Apy—. AR 807 1470 it e et g g
ot iy L " = °

N o db{(p-v)

(255)

1o (2
[1 bl \\sz) }S.Lﬂ@.

T g w——" A
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5

The Term Py This occurs in 85. Using the lines of

curvature as parametric lines let us consider an element of
area of the rree mercury surface, shown in the figure below.

lines of curvature

Normal

centers of curvature

Denoting the surface tension by T, this being the force per
unit length transmitted across any line in the surface, the
normal ccmponent of the force exerted by surface tension
along the sides of length ds1 is

Normal component dsa
of forces on sides = T ds1 5 {256)
of length ds1 3

where Ry is a principal radius of curvature. Here the
reasoning is essentially the same as in the case of a vibra-
ting string or membrane. Adding to Eq. 256 a similar expres-
sion for the normal component c¢f the frrces transmitted along
the sides of length dsz, then dividing by the area dslds3 we
obrain for the pressure due to surface tension

 The effect of surface tension is ccnsidered here in
connection with the free surface given by Eq. 85 with A=l;
however, surface tension was not used directly in determin-
ing this surtace.
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=7 (L +2)=
p, = T <£i + R3> 2Tm (257)

where ® is the mean curvature of the surface.

In order to compute the mean curvature of the free mer-
rury surface we place A=l in Eq. 85, use z and 6 as parameters,
and have as the equations of the free surface

- 2
x =1 cosf = a cosf - bj1 - (= cosze,
L 2,/

r 3iné@

<
It

r 2 \3] (258)
a siné - bl 1 - <;f> cosfsind,
L Zl
z = 2.

Differentiating we obtain

9x _ 2bz

B3z -~ ——;-coszo,

Z,
%% = 22% cosfsind,

Z

1
(259)

9x = - g sing + 2bj1 =~ 2 : cosﬂsina
9¢ z, ?
8y _ a coso + b.l - (X : (*inza-cosza)
LX) z. 2 ’
9z _
e - O

Accurate through first-order terms in b the quantities E, F,
and G in the first funaamental form are hence®

'Struik, Dirk Jan, Lectures on Classical Differential
Geometry. Cambridge, Mass., Addison-Wesley Press, 1950, pp. 58,

75, and 83.
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E =1,

P o222 (cos?gsing + cos®0sing) = o,
Z

1 (260)

_ .
G & a® + 2ab[1 - (f?) (-2 sin®0cos8 + sin®6cosé - cos’8)
N 1 d

\37
G = az - 2ab[1 - (fi cosé;
_ ./

also

2 3 ! 2\?
EG - F =2G6=2a - 2abLl - <é—> cosé, (261)
1

from which we obtain as the element of surface area

3 3
daf =~/‘EG-F dzde = {é - b[l - <£5> ]cosa}dzdo. (262)
- : 1

Taking second derivatives we now obtain

[
8x _2b cosza,
5,3 2
z Z
1
2
2~¥ = 2% cosfsinéd,
8z z
1
Oaz -
_.-.? = 0;
9z
93« 4bz .
9298 - " 3 cosf@sind,
"1
8%y _ 2bz 3, . .3
5785 - 3 (cos“@-sin“ @),
2y (263)

81




NAVWEPS REPORT 8611

B

—> = - a cosb + 2b/1 - <£L> (cosao-sinzo),
- 1 -

- 29
7 - - 2 sing + 4b| 1 - <fL> sinfcosé,
90 L 1

e 0.

Using Eqs. 259 and 263 we now set up the third-order deter-
minants which give e, f, and g of the second fundamental form.
In each case the last column is 0, 1, O; hence developing by
minors with respect to this column, and omitting terms which
contribute only terms of order two or higher in b to the ex~ -
pansion of the determinant, we obtain

lé% cosza —% cosesine
e ¥ - ‘1 “
- a3 sinf a cosé
2
+ /EG-F
\ .
e = - 23? cosg + /EG-F3, (264)
z
1
- 52% cosfsind 22% (COSzo'Sinzo)l
z1 Z1
f o .
- a sind@ a cosé l
+ EG-F?

£ o -29{3 sin® (2cos’@-cos®o+sin?e)

Zy
+ EG-F’
£ u 222 gyng + /EG-F3, (265)
V4
1




[ 21 3
- a cosf + 2bL1 - (f%) (cosza-sinza) - a sing + 4b[l - (€£> ]si
g = - &/ 1
2z \* z \? 2
- a sing + Zb[l - (é—) cosfsing a coséd + b[l - <é—> ](sin“
N2,/ 1
+ EG=~F

o

1

2 ] 2 3 : 2 3
a = 6abll - (£i> ]sin 6cosf - 3ab[1 - <€L> ](cos f-sin o)cosé} + EC
- 1 _

g = {
2 [ | A i 2 3 a
g = 4&° ~ 3abl1 -_<éf> cos@(2sin” @+cos " 6-sin” 3) + \/EG-Fi
- 1 -

2
g= {;:‘- Sab[l - <££> ]coso_ + /EG-F? .,
1

The mean ~urvature is now given by

_ gE-2fF+eG
- ® = (EG-FY) °

2 3
a’-3ab[l - (—?—> ]coso - 23D 56
Z,/ 4 z,

2 {a’-zab[l . (—:-I—Y]coso}a/:
cwed e &) ez (@) oo P e (@) )

1
2
1 2ab )
- | %3 (i - cos® ) .

Substituting in Eq. 257 we now obtain finally

.T_(_m
Py ¥ - a \l 8 cosé
1
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2ﬂ
[ <jz\\ (cosza-sinze) - a sing + 4b ( ]sinacose
[ z 3 z \? 2 3
b1 - \ cosOsinB a cosd + b[l - <éf> (sin“0-cos”9)
1

' *{) ]51n 6cosé - 3ab[ <;—> l(cos 0-sin 0)0054} + /EG-F' %
. :
7‘—) Wcoseczsim’ e+cos’e-sin’a)} + /EG-F?

—- cosfr + EG-F* ., : (266)

ure is now given by

E- 2fFteG
- == ey (267)

a3-3ab[l - (g%)a]cose - 2%;2 ;959
2 {a’-zab[l - <;z:> ]cose}3 ’
{ -ab]:3 3 (—-—) + 2 %)z]coso} {"j’s’ + ?}[1 - <§1->']coso}

p
2
'21— <l - COSG) | (268)

,..L,

257 we now obtain finally

T 2ab |
Pp & - 3 (1 - X cosé | . (269)
1

83

— ; :.4~ .'-,‘-- - - - Pest—. Ny o —r o . gy T g Sy 4 sy




NAVWEPS REPORT 8611

9 ~ Placing Eqs. 204, 208, and 237 in Eq. 201; and then plac-
41 ing Eqs. 201, 255, and 269 in Eq. 202, we now obtain
él ga’gg-vza 4b p4 :
2 ﬁs = 5 { " T a [l - (T) ]COSG}
¥ 3 1
4 2 2 r 37
% + ﬂéig_ - pap? b1 - <:£) Jcosa
3 . %
§ 3,1 3,0
< - ¢ cos(9-¢)} + PB2£ - 8a b(g :) sind
}u (rz-a) z,
2 . . (270)
o (r,-a) 1 |
: weaowy I \3
+c, - WRAEY) l'l - <—?—> ]sme
: r, -a z
5 3 1
5 T 2ab
: + 3 (i - 3 cosO) - Py
2z
1

% accurate through first-order terms in b. This may be written
i 5, =K + B sing + C cosd (271)

where
: 2 3 3 2 2.3
o 3 .  pa (B-v) pPB” a p8 ¢ by
g A=- 2 A nai i e R Sl

= _ P 2, .33 1.1 T

R=5 (2a"gv-a"v+p°4") + 2 - p, + ¢, , (272)

= 2 aub (8- ) a\ (Fa-2

B = pap”§ sing - 5 (r,1a) [1 + <§—) (;-:;)

(r’-a) 1 3
(273)

84
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- _ /2 2 2a(f-v 3 3
a1 - (2) ][22 0]
(274)
+ paB'é cosd - 21b .

If, noting Eq. 262, we also place
D = b[l - (;—) ] ; (275)
N 1/

then Eq. 203 becocomes

2, par
K= 5‘ S‘ (R + B siné + C cosd)? (a - D coss)dzde
-z Vo

3

- (276)
minimum

where kg is the surface constraint. Multiplying cut the
first factor and carrying out the integration on 8 now gives

z

1
X =7 S‘ [a(ii’#ﬁ'#ﬁ’) - 2 AC D)dz = minimum. (277)

S
...7,‘

Next we note that in Eq. 39 P is given by Eq. 173 accurate
through third-order terms in b; and, noting Eq. 92 and the
figure on page 66, (-y,) is Eq. 93 times sin¢, accurate
through second-order terms in b, Equation 39 thus becomes

3.8
p pt » 2Mba B (B-v){ o o (278)

: S(r:oa')

whesein both -sidec are accurate through second-order terms in
b. Later we shall see that due to Eq. 291 they are accurate
through third-order terms in b, Substituting from Eqs. 85
and 172 this becomes

A% siné = X u(B-¥)b (279)

85
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where

\ r 2 /7 T
lz{“[(-a (%) o 55
13pa Tar \rz"a

-
!

o

(280)
/ L 1"\
(T ) l 40 \ ~ - 30 + 78 <E;:— - 25 rz > ] } .
From Eq. 279 it follcws that
gt cosp = & /BYEYSKIuT(p-v)TDT . (281)

We regard ¢ as given, whefeupon ¢ is determined by Eq.
279, which can be used to eliminate ¢ from Eqs. 273 and 274.
¢, @and b are now determined so as to minimize the surface
constraint xg, given by Eq. 277. Let us first determine cy.
This we can do by minimizing K for an arbitrary choice of b,

o«
which amounts to equaring §E§ to zero, « being regarded as
0
a function of c, and b. Noting Eqs. 272 through 275 we thus
obtain
21 — | —— -
S‘ (2aA.2 D)dz =0 (282)

-2
1

as the relation which determines c, as a function of b.
Multiplying Eq. 282 by 24X, which does not contain z, and
subtracting fiom bkq. 277 we then obtain

z

! —2,%8 =12
S‘ (-2A4B "+ %)dz = minimum (283)

-z
1

as the relation for determining b.

Next, noting Eqs. 272 through 275 we carry out the inte-
gration in Eq. 262, and therzby obtain

86
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3 7 2
= li’fs. pb’{_z.é.(ﬁ_:é)_ - p’J + 1 pbg%t cose - ZTb, . (284)
2

3
3az1

This expression equated to Eq. 272 determines c_, which
appears in K alone. Substituting Eq. 281 in Eq. 284 we now

get

Wity

2
7 = w3 44 2a(B-v) 2 T._
h=0 {;5 p[ rg-a B ] - az’}
! (285)

*'% ob ~/b‘§’~x'u'(8-v)’b’ .

Equatrions 279 and 281 in Eqs. 273 and 274 now jive, respec-
tively,

_ 4(r_+a) 3 -a 3
R () ER) -]}, e
» -a 2 3 DA

(r,

r'-a

ol G ][] 8

(287)

+ pa v@ﬁi’-x'u’(ﬁ-VJ'b' .

Differentiating wirh respect t< b the condition !ij. 283
becomes

Z
'/ = dk , = dB, = dC
S"z \-ZAES'I'BB-'}-’-*CE%DQS w oy, (288)

1
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Here A, B, and C are given by Eqs. 285, 286, and 287, respec~
tively; and ¢ is constant. Equation 288 determines b as a
function of £, Noting that X does not contain z Eq. 288 be-
comes

T.afa T2a¢g-v)? 2 2 T
““1["‘ {ﬁpl_—_%f?i)_'ﬂ]'?“’?}
le

s < b /E‘g’-x’u’<ﬂ-v)‘b’]

wln

: ”m
|l o[t ] 2 1y
1

+ 30 ) e et gyt - — 2Kl ?-]
VB et (pen)?p? | J
Z 41 330 2 ¢ <289:‘
) 1 \ ) . -
+ w81y’ 3 {?ax - AL R (l + <5LN (33*j>

3 +
-z, (ra-a) L 21/ T T,

(zﬁ }’d N 1. (2) @)t | ol 2
“\z) 1) s, bjpal 1 - ('z-> i yera i ey

[, 1 z:

3 3
* pa v/bch_x:“a(ﬂup):ha] [pa[l - §L> ] [2ar :; - - 3’1
‘ A | -

21 pabx?u® (8-v)?

": }dz*(}.
z, ¢4?§'-x'u’(ﬁ-v)’hz

This expression determines b as & function of ¢. Lev the
Maclaurin series expansion of this function be

‘ 3 5 nan
b = blﬁ + b’E + bsﬁ + ... (290;

wherein the coefficients bl, by, ... are unknown constancs,
and the terms containing even jowers of § are omitted berause
D is evidently an odd function of §. Gooad througll second-
order terms in ¢ EqQ. 230 becomes

ae

o, v " i g~ - . . ’ " S A TR I s g
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b « blﬁ. (291)

Substituting in Eq. 289 we see that the first term is of

third order in ¢, whereas the other two terms are of first
order. We therefore omit the first term, the resuiting ex-
pression being good through second-ordex terms in §. Divid-
ing this by ¢ we obtain the following relation for determining

b .
1

oot {2 o S (0 () - ()]

r -a)

z
T 23] [2a(g-»)* 2] 2T
S - @) ][] 5
"%y 1 Zy (292)
. 2
+ pa ~/;1-K’u'(ﬂ«v)’b: {éa[l - <:£> ]
- zl
a1 2
.3 X - b
x['.Z_a(é_‘l'..Z_._p’-l-.z.T_‘y pa “(Bv) .l—-dzzo.
L ry-2 P 1.3
v/r -x* B (ﬂ v) b,
Fquations 279 and 281 now become
g' sind = xu(g-»)b, , (293)
g cosp =+ Je'-x (p-n)'b} (294)
which substituted in Eq. 292 give
4 3 4(r +4) X Y
**-ﬂ(ﬁ-v)sin¢t2z paK - -1 [ + ~f> ( ) }
X (r "a) ( r d
+a): 4 4—) 3
. lﬁcra a)z1 J;ax _ (r a [1 N ( (r' )7 }
5(r,~a}' \ (v, -a)* 2,/ T ¥/l
89
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.2 z (2%5)
N 32(r’+a) zl] s S- 1 [ g’sin! {pa[l _ <L>I]
S(r:-a)‘ -2, Kk (B-») Zy
_ 3 - ' 2
B Bt o] - ()]
1
x | 2a(p-¥ ! 2] 2L aax : dz = 0
* T 7. -a -~ B I z’ - paXpu(B-v¥)tang |[dz .
1

Here ¢ replaces b, as the unknown quantity, the two being
related by Eq. 293. The integral in Eq. 295 is

Q'sing 3.3 16 [Zagﬁ-vz’ - ﬁ’]z
1

Xu(B-v) P 2 T3 r,-a

2 |
+padz [2a -v ._pa] [m&(zr_

r,-a Xu (8-v) 23
| 1 (296)
t S
- paKu(ﬁ-v)tan¢> + %;%%%%7 (; f%) + papic05¢]
1
3
sin 27T 3 2T
+ 221[%FT§:%$ <; ;; + pag cos¢] [--;;
1 1
- anu(B-V)tan¢],
which in Eq. 295 gives
P sing + Q cos¢ + R sing tang = 0 (297)
where
3 4{r_+a) 3 a 2
o o [, e - S50 (1 () (5]
) § v 1 (r.-a)' \Z, r’ a)
90
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16(r2+a)zl 4(r,+a)
s g L (@)
3(r2-a) (v, -a) T2
3 3 13
+13_p 1621[26 -V _ﬁz

32(r3+a) 2.7
5(r,-a)" J K (p-v) 15 Fame :

a
4 2a(B-v 2 iy
tpax oz, [ r,-a - B J K#(ﬁ ) <

2 2
+ 22, ey (- % ' 2’”1"2&2"’2-"“”'”)

_ 2z 8% 3 8(r,+a) 16(r, )" +a)
Fe = e | { ) {}

3{r, -a)

+

(rz-a)4 5 9, SKu (B-»
memd  md
-S%QG[J"""P’T_;-FII %--%)}-Zzpaﬁku(ﬁﬂ')
Zl 421 Zl
2z B%u 4(r,+a) GPRN -4 3
_ 4 ] . 3 2,(a 3
P = (8-¥) {(;ak (r, -a)? [3 ¥ <zl> (13+a >] )

64(r,+a)* 168z 2a(g-v)? 3
' 45(r,-a)* ¥ TeKa (B- V) {K}a[ rgma T ? ]
]

) 2
- -§§> + ézi} - 2z1p’a’ﬂ'xu(B-V)
2z1 4Zl

_ 16z ﬁ N (r,+a)
F = ——— (8-v) ( NY (L"> (T )J

91
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(v, -a) Ta
2 (298)
- 8(r +a)z 16z B 2
+ —= 4> + lSKu(;-V) (;a[géiélil‘
45(r ) & N Ta-d
z] 5T>2 N ST’}
B -TE) YA
221‘ 4z1
G-dotatts, (2B 2] aat I, (209)
T3P arz L r,-a = 4pa z,’
5 _ 4 2 a2 2a(B-v ¢ 2 T
R=-3pa Bz, [ T -2 -9 1 + 4paB z, (300)

We now see that

R=-0Q; (301)
hence Eq. 257 can be written

P sing + a(cos¢-sin¢tan¢)

i
[on]

or

Psingcosdp+Q(cos d-sine) - 9

cos® ’
1% .. =
3 P sin2¢ + Q cosz¢> secp = 0 , (302)
tan2p = - &3 . (203)

Since the tangent has a period » we see that this equa-
tion has a root such that

0s 20 <x ,

g2

i —v—— U

EacaeX . T8
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cGr

0s ¢ < % ) (304)

Other roots of Eq. 303 can be obtained by adding multiples
of 7 to 2¢, or multiples of % to ¢. We thus obtain four

values of ¢ which satisfy Eq. 303 and are equally spaced.

over the complete circle 2r. Of these we retain only those
two which are smaller than 7, as is evident from the figure
on page 12 and the fact that Yo in Eq. 39 must be negative.

These two values differ by %, and of them we wish to choose

that one which minimizes Eq. 283, or, what is the same thing
since K << B, T, choose that for which

z

1
I = S‘ (B2 +'Ez)dz = minimum, (305)
-Z
1

That R << B, C follows from Eqs. 285, 286, 287, and 291, _
from which we see that & is of second order in &, whereas B
and C are of first order. Noting Eq. 291 and the fact that
¢ is arbitrarily small but fixed, we see that the variable
which we determine in minimizing Eq. 305 is b;, which in
view of Eq. 293 is a measure of ¢. The left-hand side of
Eq. 297 and hence Eq. 302 was obtained by dividing

dar
Ib by &, thus

3 Psin2¢+Qcos2¢>sec¢ (306)

Noting Tq. 293 it follows that

dI\

3 d¢
J; Q_% g'ji 5 / 5#(ﬂ v) {(Pcosz¢ 2Qsin2¢)secd
£ db, ¢ et g* cose
de (307)
+ <% Psin2¢ +'5cosz¢>sec¢tané} .
93
%
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The two values of ¢ which we have retained satisfy Eq. 302.
For each of these Eq. 307 becomes

2 3
d I . KB(B-V): (Foos24-2Gsin2s). (308)

dbz ﬁz cos’¢

1

Since B8 > v and K is positive due to Ea. 279, the sign of
this expression is that of

P cos2¢ - 2Q sin2¢ . , {309)

Since our two values of ¢ differ by % we see that Eq. 309

has the same absclute value for both, but opposite signs.
We choose that value of ¢ for which this sign is positive,
corresponding to a minimum of I (for fixed £), and discard
the other value of ¢, which corresponds to a maximum.

We see from Eq. 303 that the two possible quadrants of
2¢, and hence the two corresponding 45-deg sectors of ¢, are

determined by the sign of %. For each of these the signs of

sin2¢ and cos2¢ are also determined. It follows that for
each of these the sign of Eq. 309 is determined by the signs
of P and Q. Given the signs of P and Q we can hence see im-
mediately which 45-deg sector must contain ¢ in order that
Eq. 303 be satisfied and Eq. 309 be positive. These sectors
are as follows.

Sign of P Sign of Q Sector containing ¢
+ - 0<¢ < %
- - YFcecop<X
2% <73
T <<
- N 37T
+ + %} <$p< ¢

In any particular case once the signs of P and Q have been
determined, this table specifies the sector which contains ¢.
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DETERMINATION OF THE DAMPING CONSTANT
AND PRECZSSIONAL ANGULAP. VELOCITY

Now that_we have determired ¢, b follows from Eq. 279,
after which X follows frcm Eq. 93. Noting that the xy-axes
of the figure on page 3i, nave their origin at S and are
rotated clockwise by an angle ¢ from those in the figure on
page 12, whose origin is at W, as indicated in the figure on

rage 66, we see that X, and y, ©n Page 12 are given by

2
x, =&+ x cosp = ¢ + 223;29§9_
3(r,-a )
- (i 2aAﬁ 51n¢cos¢ >§,
\ 3(r ~a" Xp (B-)

(310)

2
g = - X% sing = - 2ba_sin¢
0 2 2
S(rz-a )

. <2azﬂzsin{¢ >€
z a , ..
3(rg-a YXu(B-v)

These are the coordinates of the center ¢f gravity of the
mercury. The components of the force exerted by a damper
on the main spinning boedy now follcw from Eq. 30, thus

IF | = . Myo = M8 <2a§ sin ¢ ){
3(r -a )K#(B-V)

lP,l = Mxoﬁ' =M% (1 + 2a f s:nﬁcos¢
3(r,-a" YKu (B-v)

(311)

also the torque components exerted by a pair of dampers on

the main spinning body are given by Eqs. 32, 34, and 311,
thus

x component of torque = k. {,
v component of torque = k_§, (312)
z component of torque = kzi'

95
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where
2 .
kx = Mg Lk sing,
_ 2
ky = METL(2 + k cosde), (313)
2 . kx
kz = MB k sin¢ = T
and
2.3 .
X = 43" 5 sind ] (314)

B{r:-a2 YK (B=v)

We note thatv the coordinates in E¢. 310, .he force components
in Eq. 311, and the x and y torque -cmp~nen* s in Eq. 312 are
all, closely, proportional to §, sii e in '..ese expressions
the coefficients of ¢ depend upon § anc ., which vary but
little. The z compunent of torque, however, varies as £3,

From Eq. 312 we ncw have

Lk,
i w § (315)

hence good through first-or er terms in ¢, v is constant.
The results given by the approximate picture pdresented

-~ the last part cof the section between pages 7 ard 14 now
follow from Eqs. 35 and 37, which give

. ka
iRy TR (316)
] k,L
Reduction in preces- - Ay g = y (317)
sional angular velo- B Av* 3

city

Her. Eq. 317 can be used to determine £. Starting with the
approximate value g %f we determin: the right-hand side «f
Eq. 317, which is the amount by which %f must be reduced to

give the next approximetion to 8. Repeating this process

96

T e :f“';:&- T e W s Sy - gy = ey e




< ik At PR Feu—

_NAVWEPS REPORT 8611

using the corrected value of 8 we obtain the next approxima-
tion to B~-anc <o on.

In Eq. 316 the coefficient of £ is essentially constant;
hence ¢ 1is, closely, a dying exponential, the damping factor
{coefficient of t in the exponential) being

ka
= - 35 «318)
The negative reciprocal of a is the time constant.

The results given by the approximate picture presented
previously (pp. 25-28) follow from Eqs. 73 and 74, thus,
noting Eq. 312,

k L
d
St 4B = - 3 &,

or, if B is considered to be essentially constant,

k L
P=- g5t (319)
Also
6 (nv-8p) = kb
ar
§§S§§§i§:}g§§‘a£"§§i§: N _lf.g_;, (320)

city

The damping factor corresponding to Eq. 3193 {is
ryl

Equation 317 “*iffers from E£q. (20, and Eq. 318 differs from
tq. 321 in that Ay appears in place of Bg; however, the ratio
of these two quantities should approximate univy, iince
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%; approximates B. It follows that the results given by the
two pictures are in approximate dgreement. It may be noted
that in Eqs. 319, 320, and 321 B is the angular velccity
seen by an observer who i1s located at the instantaneous
center 0f curvature of the path of S,

APPLICATION OF PROCEDURES FOR LINEAR
DIFFERENTIAL EQUATIONS

Since the coefficierts of & in the first two equations
of Eq. 312 are closely constant it appears that we can check

and perhaps improve the treatment in the section on pages 25-

28 by using the methods available for solving systems of
linear differential equations. Let us choose a stationary
set of XY axes in the plane of the upper damper with its
origin at W, in the vicinity of S, as shown in the figure

below. ¢ = WS, and is hence the x coordinate of S. Knowing
y Y
< X
3
9
W X

the torque components along the x and y axes from Eq. 312,
we can obtain those along the £ and Y axes immediately, thus

X component of torque = kxﬁ cosf - ky& 5iné

Y,
y (322)
Y ceomponent of torque = kx£ sinf + ky& cos?

= kxX - k

]

kx\ + kyX.
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The differential equatinns for the motion of S are hence,
closely,

B < Av o,
I X + —E-Y = ka + kyX
. (323)
Av B o _
-I-‘-'X-'-iY—-kxX-kyY,
. i d
or, denoting ar by D,
(D? - Lk )X + (WD - Lk )Y = 0 R
(324) B

i
o
4

2
(AvD - ka)x - (BD" - ka)Y
Equating the determinant of the system to zero we obtain

(BD*-Lk ) (AvD-Lk )
y . X! =0, (325)
(AvD-ka) -(BD -ka)

-(sn’-ka)’ - (AvD«ka)’ =0,

BD* - Lk = & A(AVD-Lk). (326)

Equation 325 is a quartic polynomial in D, whose four roots
are composed of the two pairs of roots of Eq. 326 that are
obtained for the two possible signs. Since it iy evident
that the conjugates of the two roots obtained for one sign
in E¢. 326 are rocts of this equation with the opposite
choice of sign, it follows that we need consider but one
sign. Choosing the plus sigr Eq. 326 may be written

BD* - iAvD - L(k =ik, ) = 0; (327)
henco
1] T
D = g5 | A & VTR +4BL(ky-ikx)] ,

99

T R N R

-~ e s e v et e &umn




i jrats
o leh s I IR

NAVWEPS REPCRT 8611

p— ™
_inp T /1 - ABL T T x
D = % Ll + 1 - 2. \ky”lky)ﬂ' (328)

For either choice of sign we cobtain a rcot, whose conjugate
is also a root of Eq. 325, thus

D=a=x 1. (329)

Corresponding to such a pair 2f rcots we have a mode, for
which che damping constant is a, and the precessional angular
velocity is B(g > 0).

a and B8 can be obtained exactly frem Fq. 328; however,
by applying the binomial theorem to the radical in Eq. 325
we can obtain the following approximate expression

1 1
p = 42 {i s [1’ +31 "(-14§L3 (k_-ik )>
i L ‘\ A.v y X
.3
1/ 1N1*/ _aBL N\
+35 (- 2) kGl SCL NP R
_ ilw 2BL ., .
D = 5% {‘l + [l - A’u’ (ky—lkx)
(330)
sy d
2B L 3ok k) 4+ ...} }.
At Y X Xy )
Noting Eq, 329 this gives for the plus sign
Lk 23L%% x
D ~ - £ x)’+
Ay A’v’ ot
(331)
Lk 3
[ Av y _BL' .3 .3 ]
4'i{kB I Y Ayt (ky kx) + |’
whence
Lk 25LY% k
[+ S R A - 21"’"‘-. »
v Ady (332)
100
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g = A ey B ey
B S Ay s, KR e

We note that through first-order terms in kx and k  Eqg. 332
agrees with Eqs. 317 and 318. ’

The corresponding mode can be obtaiged using complex
notation for damped sinusoids; thus if X and Y denote the

complex numbers corresponding to X and Y, respectively, and
D = a + ip the differential equaticns (Eq. 324) becomei
(BD’-ka)i + (AvD-ka)? =0
(333)
= 0.

. - z —
(AvD-LkX)X - (BD -ka)Y

The solutiorn. of this set or linear, homogevreous, algebraigc
equations can be written down immediately by noting that X
and Y are propo:rtional to the cofactors of the elements of
either row of the determinant in Eq. 325--say the first,
thus

>|

= - cI(Bn’-Lk ),
_ y (334)
Y = - ¢ (AVD-1k )

T Complex notation for damp d sinuscids can easily be ob-
rainzd as follow:, Let a one-to-one correspondence between
damped sinusoids of fixed damping constant o and angular fre-
quency w, and points of the complex plane be defined by the
relatinn ot .

Ae sin(wt+8) ~ A/ 6 = A{cosd+ising);
thern it can readily 2e shown that the complex number ccrre-
spording to a lirear combination of damped sinusoids, all
having the same « and w, is equal to that same lipedar com-
bination of the complex numbers correésvondipg to the compo-
nent darped sinusoids; also that the complex number corve-
sponding to the time derivative of a damped sinusoid is
equal to (etiw) times the complex number corresponding to
the damped ginusoid itself.
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where ¢, is an arbitrary complex constant. Since Eq. 326
with the plus sign is valid Eq. 334 becomes

= ic,

X (335)
Y =o¢
where ¢ = Icl [ 0. is an arbitrary complex constant. It
follows that
X = |e] et cos(Bt+8c),
(336)
Y = |c et sin(Bt+6,);
also
at
g = /X33Y2 = |c| € . (337)

The phase of the damped sinusoids Eq. 336 is hence such that
S spirals around W with an expconentially decreasing radius.

It might appear that another mode can be cbtained by
using the minus sign in Eq. 328, and that the motion of § is
a composite of the two modes; however, for the torque equa-
tions (Eq. 312) to be valid it is necessary that the origin
be at W, on the precession axis. Furthermorz with the minus

Lk,

sign the value of g obtained approximates —2 . as can be seen

Ap’
trom Eq. 330. At this extremely low precessional angular
velocity the above analysis of the action of the mercury
damper, upon which Eq. 312 is based, is no longer valid.

POLAR FORM OF THE TORQUE DIFFERENTIAL EQUATIONS

Referring to the figure on page 98 we note in regard to
the motion of S that
Radial component of velocity = é,
Transverse component of velocity = §é. (338)
Radial component of acceleration = E-Eb',
Transverse component of acceleration = 2Eb+§3.
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Noting that g = ¢ it follows that

Av - B .
T &8 - 1 (2BE¥EB) = 21
B

L

s 2 _A_‘i -
(§-£8°) + 5 €8 = 27,

closely where 27, and 27y are the x and y components, respec-
tively, of the total torque exerted by both dampers on the
main spinning body. These relations may be writter

(Ap-2BB)E - BEB = L7

. (339)
Bt + (Av-BB)B¢ = 2Lry.
Applying Eq. 339 to the case just considered in the
previous section we have, noting Eqs. 312 and 337,
- .o z * .
t =at, t=a¢, B=0, 27x=kx£’ 27y=‘(y§; (340)
hence
(Ap-2Bg)a = ka
2 {(341)
Ba® + (Av-BB)B = Lkv.
These relations may be written
ka
@ = Ry-287 (342)
Lk 3
LT _ﬁ% - 5 (343)

which give the damping constant and the reduction in the pre-

cessional angular velocity. Again we note that since %f

approximates 8, Eq. 342 is in approximate agreement with EQqs.
318 and 321. 1In using Eqs. 342 and 343 g is first assigned

the approximdate value %f, and a first approximation to a

calculated from Eq. 342. This and the approximate value of
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B placed in the right-hand side of Eq. 343 give the amount
by which %} must be reduced in order to obtain the second
approximation to B. Using this instead of-%% we can now

repeat the above process to get a second approximaticn to a,
a third approximation to B, and so on.

Finally we ncte that the equations (Eq. 339) provide a
better means of determining damping behavior and precessicnal
angular velocity than does the method described in the sec-
tion on pages 25-28. We shall see that these equations will
prove useful in considering the case of the crescent configu-
ration of the mercury, for which the torque components are
given by expressions which differ greacly from Eq. 312, and
for which therefore linear differentia) cquation procedures
cannot be used.

CASE WHERE THE MERCURY CONFIGURATION
IS CRESCENT-SHAPED

We shall next consider the case where the mercury is
crescent-shaped, and completely tills an angle 26p of the
channel, or race, the flow being turbulent. In so doing we
shall use the same notation which we have been using in con-
nection with the eccentric ani'vlar configuration. Instead
of the figure on page 31 we now have the configuration shown
in the figure on the following page. The volume of the mer-
cury 1is evidently

20

Volume of _ (" 'm T T a3
mercury ( 2:) 2z w(r,-r|) = 2z 6 (r -r ). (344)

Again dencting the x coordinate of the center of gravity of
the mercury by x we have

2] r Z
x times mercury m 2 b s
x t Y = r cosfdédrdz
volume 0

- m x‘l -z‘

2, 5 s
=5 (r'-ri)sinﬂm;
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channel
r
1 <
mercury X
\
z z
1
[
: X
hence dividing by Eq. 344
3 3
_ -r iné
< - 233 (=), (345)
Ty-T, m
or
3 ] _
- . 2 a+rxr'+r‘ /sinom (346)
3 \ T T \~5, /)

108

. o o




NAVWEPS REPORT 8611

channel

X

——center of
~ gravity of
> mernury

Here @, is determired by Eq. 344, since the mercury volume
is known.

If, as before, we observe the system while riding with
axes which rotate courterclockwise at the precessional angular
velocity B we see the configuration shown in the above figure.
Noting the figure on page 12 we now take moments about S, as
described in the section on pages 15 and 16, and thus obtain

IF 1g = x r2(8-»)%. (347)

Here r, is the mean radjus of the mercury, and rp(B-») is the
velocity of the mercury relative to the channel. K, is a co-
etficient obtained from Chézy's formula, which coefficient
depends upon the shape of the channel, the area of the surface
cf contact of the mercury with the channel, and the density
and viscosity of the mercury.

® Rouse, Hunter, ond J. W. Howe. Basic Mechanics of
Fluids. New York, Wiley, 1953. P. 148,
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Noting Eqs. 32, 34, and the fact that thers are two
dampers we obtain the following components of the torque
exerted by the mercury on the main spinning body.

Total x component of torque = er = 2|F1|L
(348)
3 2
_ ZLKOrm(B-v)
= i ,
Total z component of torque = ZTZ ='2|F1|§
(349)

[

3 3
2K0rm(3»v) .
Equation 347 in the first equation of Eq. 30 now gives

3 2
K,r (B-v)
Y, = - 0 :p’§ , (350)

whence, noting Eq. 346 and the figure on page 106,

<

sing = - 3}, (351)

which relation cCetermines ¢. Again noting the figure on page
106 we now have

x, = & + X cos¢, (352)
wherice the second relaticen in Eq. 3C gives
IF, | = Mg* (¢4xcose). (353)
It now follows from the second equatiocn of Eq. 34 that for

the two dampers together

Total y compcnent of torque = 2r_ = 2|F_|L
y - (354)

= 2LMB" (¢4xcose).

107

f
'
4“ , i -




LT .

*

NAVWEPS REPORT 8611

Equating Eq. 34® to Ay we obtain for the rate of increase
of the angular velocity of spin

. 2K (B-n)
v = = : (355)

Finally let us apply Eq. 339 to the present case in
order to obtain information on the damping and the decrease
in precessional angular velocity. In so doing we shall
neglect the variation of 8 and v». Substityting Eq. 348 in
the first equation of Eq. 339 and placing B=0 we obtain

2K (B’
(Av-2B3)¢ = §M~w~ . | (356)

Letting ¢_ denote the initial value of £ we separate variables
and integrate, thus

(.82
(Av-2Bp} ——5— = 2L3K0r;(3—u)2t
or
/2 4L3K0r;(ﬁ—v)z
¢ =V//éo - 2BB-Av t. (357)

Finally we substitute Eq. 354 in the second equatioa of

N
Eq. 339, divide by B, and solve for the binomial (&% - g).
The decrease in the precessional angular velocity is thus
found to be '
Av | g o= od [203M8 (f4xcose)-BE ] (558)
) B3E \ '

Her» it is likely that in the bracket { and z can be neglented;
but this can best be decided ir specific numerical cases. In
this connection we no*e that

1u8
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E _ 1 (ZL'KOr;(B-v)z:f

x 3BG-Av (358)

whi~h can be obtained by differentiating Eq. 357 twice.

Several things are immediately evident from the above
analysis. First, we see from Eqs. ‘50 and 351 that as ¢ de-
creases during the course of the cdamping (-y,) and ¢ increase.
The smallest value of ¢ that is compatible with the crescent
configuration is that for which Yy = X, in which case ¢ = %.
For smaller values of ¢ the mercury configuration becomes ec-
centric annular.

Second, we note from Eq. 357 that ¢ decreases parabolli-
cally instead of expcnentially, as shown below. The rate of

crescent configuration

transition phase

ffﬁ:lght eccentric annular
¢ s configufation
o \
\{jt:-~m~______mﬂ_
0 t

damping increases as § decreases, and is greatest just before
the crescent flow breaks and goues over into the eccentric
annular., In fact differentiating Eq. 357 we obtain

‘ 20k r}(g-v)?
i = - (). (360)
109
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from which we see that the rate of damping varies inversely
as ¢, closely, instead of directly as &, which is the case
with the eccentric annular configuration.

rinally, we see that since the first part of the curve
of ¢ against t is a parabola which is concave downward, and
the last part of this curve is a damped exponential, which
is concave upward; and since there is an intermediate part
of this curve which corresponds to values cf ¢ for which the
flew is eccentric annular but very eccentric; it follows
that the ¢t curve as a whole has, it differentiable, a point
of inflection, and in any case should be capible of being ap-
prcximated by a straight line over an appreciable range.
Such a straight line is shown dotted in the figure on page
109. '
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- Appendix A

EFFECT OF THE TILT AND THREE DIMENSIONAL NATURE
OF THE DAMPER ON THE FORCE WHICH IT EXERTS
ON THE MAIN SPINNING BODRY

The force exerted by the mercury on the main spinning
body was derived on pages 8-12. In this derivatior the
damper was considered to be essentially two dimensional, its
plane being fixed, and its motion being in this plane, This
simplified the derivation, and gave for the resultant force
exerted by the mercury on the main spinning body a force
which lies in the plane of the damper. Actually the damper
is three dimensional, and is tilted slightiy. This gives
rise to a torque, which may shift the resultant force away
from W, and which may, in addition, give rise to a torque
whose vector is parallel to that of the resultant force.

The purpose of this appendix is to refine the above deriva-
tion, taking into account the tilt and three dimensional
nature of the damper, and see whether or nut the results ob-
tained differ appreciably from those obtained above.

Determination of FL. Let us place a set of xyz axes with

the z axis coincident with the precession axis, the +z direc-
tion being outward away from the body, and the positive x
axis passing through the center of gravity of the mercury.
Noting Eq. € it follows that

it

F S‘ g Cix+jy)dm = g (i S x dm 4+ 3 S‘ y dm
LUy M M
| (A1)
F

. 2"'.
L i8“Mx

where the integrations extend throughout the mass of the
mercury, and X is the x coordinate of the center of gravity
of the mercury. We thus see that the total centrifugal force
is identir~al with that obtained by concentrating all mass at
the center of qravity. This recult is in agreement with Eq.
14,
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Determination of PC. Equaticns 15 and 16 are lormally

valid in the present case; hence we again cbtain tle result
(Eq. 17), namely

F. = 0. (A2)

Since the total Coriolis force is zero the total force =-F is
composed of FL alone, as before.

Determination of Ty, Let us place a set of xyz axes with

the z axis coincident with the precession axis, the positive
z direction being outward, and the positive x axis passing
through S, as shown in figure below.

z z,
D_\ o
0 X
2 : Darper
recession .1
axis

Spin axis

C.G. ¢f main spinning
body

The torque vector due to the centrifugal force field, calcu-
lated for the origin 0 is then, noting Eq. &,

r, = 5 T (ix+jy+kz) x (ix+jy)dm

e

dm

ijk
Xy z
xyO
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T, < g* (; i g‘ yzdm + 3 g‘ xzdm). (A3)
: M M

Next let us place a set of x,y,;z, axes with the z, axis
coincident with the spin axis, tﬁe positive direction being
outward, the origin at S and the positive x, axis passing
through the center of gravity of the mercury (see figure on
previous page and the figure below). The xyz and X, ¥,2,

coordinetes of any point are then related by the equations

it

X = X, cos¢ cosa + ¥, sind cosa + z. sina + L sina

1 1
y = - x,sin ¢ + vy, cos¢ (R4)

|

z = - X cos¢ sina - Y, sin¢ sina + z cosa.

1

Substituting Eq. A4 in Eq. A3 we obtain

= - ig? S [x: sing cos¢ sina

.
L M

-

- y: sin¢ cos¢ sina - X, Y, (cos’¢-sin3¢)sina
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- x,2, sin¢ cosa +y z cos¢ cosa]dm

+35 8 Y {- x: cos’¢ sina cosa
‘M

2 2 3
-y, sin ¢ sina cosa + z, sina cosa

- 2xy sin¢ cos¢ sina cosa

+ X, z, cos¢ (cos’a-sin’a) + Yy, 2z, sin¢ (cos’a

- sinaa) - le cos¢ sinda - ylL sin¢ sinza

+ 2z L sina cosaldm.

Since the x,y, plane and the x,z, plane are planes of sym-

metry for tﬁe mercury the various products of inertia vanish,
leaving

~»

T, T T i p' sing cos¢ sina 3 (X:-Y:)dm

M
+ 4 g% 41 R | I |
j B {; sin2a S; [-(x1+y1) + (y,-x{)cos2¢ (R5)

+ Zz:]dm - MD;I cos¢ sin’é}

where x; is the x, coordinate of the center of gravity of
the mercury. ?l and z, are zero because of symmetry. We
shall next digress long enough to compute the relevant
integrals using the procedure and cylindrical coordinate
system already used in Eqs. 87 and 90. In so doing we shall
omit terms ¢f order higher than one in b,

We have

r

Z
S;(x:'yz)dma=p S:z:S;:'S;_:[l. (f?>a]cnsor’(005’0
1

- sin'G)rddedr
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« £ S' S'zr {% -a'+4a b[ <;—> ]cosé}cosZOdzda

= 0, (A6)

S'(x +y )dm= p S' S‘ S‘ [l- <;{> ]cosor *dzdedr

S‘ S‘zt l-:-a +4a b[ -<;-\ ]cosé}dzda

z1
S‘ (r:-a‘)dz

-21

R

=pr 2z, (r:-a‘), (A7)

2 ZipanpTa .
S‘z dm=p S S‘ g 2 z " rdzdédr
M ! -z, Yo

b1 -2 ]

a b[l \21/ ‘coso
Zypar 3

% g S‘ z’{r:-a’+2ab[1~ (—zg- ]cos a}dzdo
..2;1 0 1

z
1
= pr(r:-a’) S

Zy

£ pr(ry-ah)z;. (A8)

Equations A6, A7, and A8 in A5 now give

Ty, 3j B'[ili sin2a pt(r:-a')z1(4z:-3r:~3a') 2)

et e

- ML;1 cos¢ sin’a].
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From £Eq. 291 we see that b ara ¢ are of the same order;
hence since

¢ = L sina (A10)

it follows that ¢, b, ard sina are of the same order, and
the last term in the bracket of Eq. A9 carn be omitted. Sub-
stituting from Eq. 89 we then obtain finally

2
- 2 ., 2 .2
T, 23 53 sin2a (4z1-3r2—3a ). (All)

C
indicated by Eq. A2, the torque vector due to the Coriolis
force field is 4independent of the point for which it is cal-
culated. We may therefore choose S as the point for which
we calculate 7~. Next we note that since the cross product
is distributive re may be regarded as the sum of the contri-
butions of the following_gcomponents into which the preces-
sional angular velocity 8 is resolved.

Determination of T First we note that since F.= 0, as

1. B cosa in the +z1 direction,
2. B sina cos¢ in the =X, direction, (Al12)

3. B sina sing¢ in the -y, direction.

We shall now compute thess contributions.

The Coriolis forces on twc symmetrically placed equal
elements of mass dm due to the first of the components (Eq.
A12) are shown in thco figure at the top of the following page.
It is now evident that the four Coriolis forces which act on
four equal elements of mass dm symmetrically located at points
(X, ,%y,,%%,;) together have a resultant which passes through S,
and hence contributes nothing to the torque vector for this
point, Since the mercury may be regarded as composed of such
sets of symmetrically placed mass elements it follows that
the contribution of the first (and largest) of the three
angular velocity components (Eq. Al2) to e is zero.

Turning to the second of the components in Eq. Al2 we
have the situation shown in the figure at the bottom of the
following page, where (*) indicates "up" and (P indicates "down",
The resultant of thase forces is a couple whose vector points
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Mercury
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in the +y direction and is the desired ceontribution to 7.
We wish to determine this accurate through first-order terms
in b. But the angular velocity component has a factor sine,
which, we saw above, is of first order in b; hence ir comput-
ing the moment of the Coriolis force system about the y, axis
we may place b=0 in the expressions wiich give Vg and the
shape of the mercury. In this way we obtain directly the
desired first term in the Maclaurin series expansion of the
moment. Under these circumstances we see the mercury as an
annular ring with no eccentricity rotating clockwise with
angular velocity (B-v), as shown below.

yl
~
— B
AN
\ v

L
B
N g

Using cylindrical coordinates for the integration we obtain
for the desired moment

2 T

1 arp 13
Moment & 2pfBsinacose g S ) ' (B-v)rcoslrecosfrdzdedr
-z, Yo a
1

pB(B-v) sinacos¢(r;-a‘)722x

=

Nl ol

Momert = HB(B-v)(r:+a’)cos¢ sina, (A13)
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The contribution of the second component in Eq. Al2 to 7y is
a vector having the +y1 direction and the magnitude (Eq. Al3).

The third component in Eq. Al2 can be treated in the
same manner as the second. Since the two are perpendicular,
and one has a factor sin¢ wherees the cther has a cos¢, cor-
respornding modifications must be made in the contribution to
rc. Noting Eq. Al3 it follows that the contribution of the
third component of Eq. Al2 to "o is a vector in the =X direc-
tion of magnitude

ol

Magnitude = 3 MB(B-»)(rj+a’)sing sina. (R14)

If these two vector contributions are resclved intc compo-
nents along the x, y, and z directions and combined, we find
that 7o consists of a vector extending in the +y direction
and given by

To =] % Mﬂ(ﬁ-v)(r:+a3)sina. (A15)

In view of Eqs. Al and A2 we see that the expressions
in Eq. 311 for |F,| and lPil remain valid in the present case.
We note that these are of first order in ¢ and hence b. It
is for this reason that expressions accurate through first
order-terms in b are adequate in computing torque vectors.
The torque vectors 7, and 7o, given by Eqs, All and AlS,
respectively, are evidently provided for by letting the force
compone..t vector F; act at W as before; but moving the point
of application of the component vector P’ to a point on the
precession axis whose distance from W is

Distance from j component of (TL+TC)

F, %o W = - A
e (i + 2a’ g’ singcose (A16)
2L

3(r3-at)Ku(g-v)
X {% (3r:+3a’-4z:) - (& - % (r:+a')}

toward the center of gravity of the main spirning body. Here
IP’| is given by Eq. 311.

T
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We have seen that the torque on the main spinning pody
due to F, is of importarce in determining the damping fa:tor
a and the rate of increase of the spin velocity P, whereas
the torque due to F, is of importance in determining the
shift in the precessionél angular velocity B. We have not
altered F,, and have chinged only the noint of application
of F,. The following final results are now evident. The
three dimensional nature of the damper and its tilt require
no correction whatever in the damping factor a or the rate
of increase in spin velccity 3. The shift in precessional
angular velocity is¢ affected by this refinement, and can be
gotten by replacing L by [L-distance ¢iven by Eq. Al6] in
the expression for k, in Eq. 313 befcre using it in Eq. 317.
We are really interested, however, only in the damping factor.
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Appendix B
OUTLINE OF THE PROCEDURE FOR SOLVING A PROBLEM

A. Eccentric Annular Configuration

1. Determine a, the inner radius of the mercury
with no wobble. This can be done using Eq.
89.

2. Determine K using Eq. 280.

(W}
.

Tentatively placing
B8 = —-E- (Bl)

det.~mine P from Eq. 298, and Q from Eq. 299.
4, Determine ¢ from Eq. 303 and the tablc on
page 94.

5. Determine k from Eq. 314; then determire
k , k , and k_ from Eq. 313.
X y 4
6. Obtain v from Eq. 315,

%; - 3) from Eq. 317,
and a from Eq. 318. \

\

If desired the calculated value of <E§ - f | can be used to

give an improved value of 8, which can then be used to replace
£q. Bl; and the subsequent calculations repeated, and so on.

B. Crescent Confiquration

Determine 6, from Eq. 344.
2. Determine rp, the mean radius, trom the relation

1 :
rm =3 (rlG xa) . {B2)

3. Determine X, from Chézy's formula, which is de-
scribed in the reference {footnute #) on page
106, and in other books on applied iydrodynamics.

4. Tewtatively placing

g = %; \B3)
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y is given by Eq. 355, the motion of the spin
Ay

axis is given by Eq. 357, and 3 - B} is given
by Eq. 358, in which ¢ and ¢ are given by Egqs.
357 and 359, respéctively.

If desired the calculated value of <A% - 32, which is now a

function of t, can be used tc suggest a value of B which
supersedes that given by Eq. B3, after which the subsequent

calculations are repeated; and so on.

The time at which the wobble would disappear if the
crescent configuration did not go over into the eccentric
annular configuration is given by placing (=0 in Eq. 357 and
solving for t. Actually, as stated on page 109, the crescent
configuration cannot persist for values of ¢ which are smaller
than that given by equating - y,, given by Eq. 350 and X,
given by Eq. 346. The value of t at which this value of ¢ is

reached is given by Eq. 357.

NOTE. In this report the analysis of the eccentric an-
nular case is intended for use only in connection with large
mercury dampers, wherein surface tension plays but a small
role. (See footnote 5, page 79.) In any particular case it
is hence necessary that the terms in the calculations which
are due to surface tension be relatively small.
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